970
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-Ålesund, Spitsbergen in July 2015

, , , , , , , , , & show all

References

  • Ackermann, J. 1998. The extinction-to-backscatter ratio of tropospheric aerosol: A numerical study. J. Atmos. Oceanic Technol. 15, 1043–1050. doi:10.1175/1520-0426(1998)015<1043:TETBRO>2.0.CO;2.
  • Alados-Arboledas, L., Müller, D., Guerrero-Rascado, J. L., Navas-Guzman, F., Perez-Ramirez, D. and co-authors. 2011. Optical and microphysical properties of fresh biomass burning aerosol retrieved by Raman lidar, and star‐and sun‐photometry. Geophys. Res. Lett. 38, L01807. doi:10.1029/2010GL045999.
  • Alexandrov, M. D., Marshak, A., Cairns, B., Lacis, A. A. and Carlson, B. E. 2004. Automated cloud screening algorithm for MFRSR data. Geophys. Res. Lett. 31, L04118. doi:10.1029/2003GL019105.
  • Ansmann, A.,Wandinger, U.,Riesbell, M.,Weitcamp, C., and Michaelis, W. 1992. Independent measurements of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl Opt. 31, 7113–7131. doi:10.1364/AO.31.007113.
  • Anton, M., Valenzuela, A., Mateos, D., Alados, I., Foyo-Moreno, I. and co-authors. 2014. Longwave aerosol radiative effects during an extreme desert dust event in southeastern Spain. Atmos. Res. 149, 18–23. doi:10.1016/j.atmosres.2014.05.022.
  • Böckmann, C. 2001. Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. Appl. Opt. 40, 1329–1342. doi:10.1364/AO.40.001329.
  • Böckmann, C. and Osterloh, L. 2014. Runge-Kutta type regularization method for inversion of spheroidal particle distribution from limited optical data. Inverse Probl.. Sci. Eng. 22, 150–165. doi:10.1080/17415977.2013.830615.
  • Böckmann, C., Mironova, I., Müller, D., Schneidenbach, L. and Nessler, R. 2005. Microphysical aerosol parameters from multiwavelength lidar. J. Opt. Soc. Am. A 22, 518–528. doi:10.1364/JOSAA.22.000518.
  • Böckmann, C., Ritter, C. and Ortiz-Amezcua, P. 2017. Arctic biomass burning aerosol event microphysical property retrieval. In: EPJ Web Conference, Vol 176, 2018, 28th International Laser Radar Conference (ILRC28). Bucharest, Romania, 05023. doi:10.1051/epjconf/201817605023.
  • Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P. and co-authors. 2013. Clouds and aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Stocker et al.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Chapter 7, pp. 571–658. doi:10.1017/CBO9781107415324.016.
  • Bush, B. C. and Valero, F. P. J. 2003. Surface aerosol radiative forcing at Gosan during the ACE-Asia campaign. J. Geophys. Res. 108, 8660. doi:10.1029/2002JD003233.
  • Chen, W. N., Chiang, C. W. and Nee, J. B. 2002. Lidar ratio and depolarization ratio for cirrus clouds. Appl. Opt. 41, 6470. doi:10.1364/AO.41.006470.
  • Doherty, S. J., Anderson, T. L. and Charlson, R. J. 1999. Measurement of the lidar ratio for atmospheric aerosols with a 180 degree backscatter nephelometer. Appl. Opt. 38, 1823–1832. doi:10.1364/AO.38.001823.
  • Eck, T. F., Holben, B. N., Reid, J. S., Sinyuk, A., Hyer, E. J. and co-authors. 2009. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J. Geophys. Res. 114, D11201. doi:10.1029/2008JD010870.
  • Engelhart, G. J., Hennigan, C. J., Miracolo, M. A., Robinson, A. L. and Pandis, S. N. 2012. Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmos. Chem. Phys. 12, 7285–7293. doi:10.5194/acp-12-7285-2012.
  • Ferrare, R. A., Turner, D. D., Heilman Brasseur, L., Feltz, W. F., Dubovik, O. and co-authors. 2001. Raman lidar measurements of the aerosol extinction-to-backscatter ratio over the Southern Great Plains. J. Geophys. Res. 106, 20333–20347. doi:10.1029/2000JD000144.
  • Haarig, M., Ansmann, A., Gasteiger, J., Kandler, K., Althausen, D. and co-authors. 2017. Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE, Atoms. Atmos. Chem. Phys. 17, 14199–14217. doi:10.5194/acp-17-14199-2017.
  • Haywood, J. M., Osborne, S. R., Francis, P. N., Keil, A., Formenti, P. and co-authors. 2003. The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J. Geophys. Res. Atmos. 108, 8473. doi:10.1029/2002JD002226.
  • Herber, A., L., Thomason, W., Gernandt, H., Leiterer, U., Nagel, D. and co-authors. 2002. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. 107, AAC 6-1–AAC 6-13 doi:10.1029/2001JD000536.
  • Hobbs, P. V., Reis, J. S., Kotchenruther, R. A., Ferek, R. J. and Weiss, R. 1997. Direct radiative forcing by smoke from biomass burning. Science 275, 1777–1778. doi:10.1126/science.275.5307.1777.
  • Hoffmann, A. 2011. Comparative aerosol studies based on multi-wavelength Raman LIDAR at Ny-Ålesund, Spitsbergen, PhD Thesis Uni. Potsdam.
  • Hoffmann, A., Osterloh, L., Stone, R., Lampert, A., Ritter, C. and co-authors. 2012. Remote sensing and in-situ measurements of tropospheric aerosol, a PAMARCMiP case study. Atmos. Environ. 52, 56–66. doi:10.1016/j.atmosenv.2011.11.027.
  • Kasten, F. 1969. Visibility forecast in the phase of pre-condensation. Tellus 21, 631–635. doi:10.3402/tellusa.v21i5.10112.
  • Lisok, J., Rozwadowska, A., Pedersen, J. G., Markowicz, K. M., Ritter, C. and co-authors. 2018. Radiative impact of an extreme Arctic biomass-burning event. Atmos. Chem. Phys. 18, 8829–8848. doi:10.5194/acp-18-8829-2018.
  • Lv, M., Liu, D., Li, Z., Mao, J., Sun, Y. and co-authors. 2017. Hygroscopic growth of atmospheric aerosol particles based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign. J. Quant. Spectrosc. Radiat. Tran. 188, 60–70. doi:10.1016/j.qsrt.2015.12.029.
  • Markowicz, K. M., Flatau, P. J., Remiszewska, J., Witek, M., Reid, E. A. and co-authors. 2008. Observations and modeling of the surface aerosol radiative forcing during UAE. J. Atmos. Sci. 65, 2877–2891. doi:10.1175/2007JAS2555.1.
  • Markowicz, K. M., Pakszys, P., Ritter, C., Zielinski, T., Udisti, R., and co-authors. 2016. Impact of North American intense fires on aerosol optical properties measured over the European Arctic in July 2015. J. Geophys. Res. 121, 14487–14512. doi:10.1002/2016JD025310.
  • Maturilli, M. 2016. Basic and other measurements of radiation at station Ny-Alesund (2015-07). Alfred Wegener Institute - Research Unit Potsdam, PANGAEA. doi:10.1594/PANGAEA.863270.
  • Maturilli, M. and Kayser, M. 2017. Arctic warming, moisture increase and circulation changes observed in the Ny-Ålesund homogenized radiosonde record. Theor. Appl. Climatol. 130, 1. doi:10.1007/s00704-016-1864-0.
  • Maturilli, M., Herber, A. and König-Langlo, G. 2015. Surface radiation climatology for Ny-Ålesund, Svalbard (78.9°N), basic 30 observations for trend detection. Theor. Appl. Climatol. 120, 331–339. doi:10.1007/s00704-014-1173-4.
  • Moroni, B., Cappelletti, D., Crocchianti, S., Becagli, S., Caiazzo, L. and co-authors. 2017. Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-Ålesund (Svalbard Islands). Atmos. Environ. 156, 135–145. doi:10.1016/j.atmosenv.2017.02.037.
  • Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U. and co-authors. 2007b. Aerosol-type-dependent lidar ratios observed with Raman lidar, 2007. J. Geophys. Res. 112, D16202. doi:10.1029/2006JD008292.
  • Müller, D., Böckmann, C., Kolgotin, A., Schneidenbach, L., Chemyakin, E. and co-authors. 2016. Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET. Atmos. Meas. Tech. 9, 5007–5035. doi:10.5194/amt-9-5007-2016.
  • Müller, D., Mattis, I., Ansmann, A., Wandinger, U., Ritter, C. and co-authors. 2007a. Multiwavelength Raman lidar observations of particle growth during long-range transport of forest-fire smoke in the free troposphere. Geophys. Res. Lett. 34, L05803. doi:10.1029/2006GL027936.
  • Ortiz-Amezcua, P., Luis Guerrero-Rascado, J., Jose Granados-Munoz, M., Antonio Benavent-Oltra, J., Böckmann, C. and co-authors. 2017. Microphysical characterization of long-range transported biomass burning particles from North America at three EARLINET stations. Atmos. Chem. Phys. 17, 5931–5946. doi:10.5194/acp-17-5931-2017.
  • Penner, J. E., Dickinson, R. E. and O'Neill, C. A. 1992. Effects of aerosol from biomass burning on the global radiation budget. Science 256, 1432–1433. doi:10.1126/science.256.5062.1432.
  • Pornsawad, P., Böckmann, C., Ritter, C. and Rafler, M. 2008. Ill-posed retrieval of aerosol extinction coefficient profiles from Raman lidar data by regularization. Appl. Opt. 47, 1649–1661. doi:10.1364/AO.47.001649.
  • Reid, J. S., Koppmann, R., Eck, F. and Eleuterio, D. P. 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 5, 799–825. doi:10.5194/acp-5-799-2005.
  • Ritter, C., Neuber, R., Schulz, A., Markowicz, K. M., Stachlewska, I. S. and co-authors. 2016. Raman-lidar derived aerosol properties over Ny-Ålesund, Spitsbergen during the Arctic Haze season 2014. Atmos. Environ. 141, 1–19. doi:10.1016/j.atmosenv.2016.05.053.
  • Samaras, S., Nicolae, D., Böckmann, C., Vasilescu, J., Binietoglou, I. and co-authors. 2015. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols. Comput. Phys. 299, 156–174. doi:10.1016/j.jcp.2015.06.045.
  • Schkolnik, G., Chand, D., Hoffer, A., Andreae, M. O., Erlick, C. and co-authors. 2007. Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmos. Environ. 41, 1107–1118. doi:10.1016/j.atmosenv.2006.09.035.
  • Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S. and co-authors. 2006. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos. Chem. Phys. 6, 5225–5246. doi:10.5194/acp-6-5225-2006.
  • Stevens, B. 2015. Rethinking the lower bound on aerosol radiative forcing. J. Clim. 28, 4794–4819. doi:10.1175/JCLI-D-14-00656.1.
  • Stier, P., Schutgens, N. A. J., Bellouin, N., Bian, H., Boucher, O. and co-authors. 2013. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study. Atmos. Chem. Phys. 13, 3245–3270. doi:10.5194/acp-13-3245-2013.
  • Stock, M. 2010. Characterization of tropospheric aerosol variability in the European Arctic, PhD Thesis Uni. Potsdam 2010. http://opus.kobv.de/ubp/volltexte/2010/4920/.
  • Stock, M., Ritter, C., Aaltonen, V., Aas, W., Handorff, D. and co-authors. 2014. Where does the optically detectable aerosol in the European Arctic come from? Tellus B 66, 21450. doi:10.3402/tellusb.v66.21450.
  • Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., et al. (eds.). 2013. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535 pp. doi:10.1017/CBO9781107415324.
  • Toledano, C., Cachorro, V., Gausa, M., Stebel, K., Aaltonen, V. and co-authors. 2012. Overview of Sun photometer measurements of aerosol properties in Scandinavia and Svalbard. Atmos. Environ. 52, 18–28. doi:10.1016/j.atmosenv.2011.10.022.
  • Tomasi, C., Kokhanovsky, A. A., Lupi, A., Ritter, C., Smirnov, A. and co-authors. 2015. Aerosol remote sensing in polar regions. Earth-Sci. Rev. 140, 108–157. doi:10.1016/j.earscirev.2014.11.001.
  • Treffeisen, R., Tunved, P., Ström, J., Herber, A., Bareiss, J. and co-authors. 2007. Arctic smoke – aerosol characteristics during a record smoke event in the European Arctic and its radiative impact. Atmos. Chem. Phys. 7, 3035–3053. doi:10.5194/acp-7-3035-2007.
  • Tunved, P., Ström, J. and Krejci, R. 2013. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Ålesund, Svalbard. Atmos. Chem. Phys. 13, 3643–3660. doi:10.5194/acp-13-3643-2013.
  • van de Hulst, H. C. 1981 “Light scattering by small particles” Dover Books. (corrected reprint of the John Wiley & Sons, Inc., New York, 1957 edition). ISBN: 0-486-64228-3,
  • Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U. and co-authors. 2002. Inversion with regularization for the retrieval of tropospheric aerosol parameters from multiwavelength lidar sounding. Appl. Opt. 41, 3685–3699. doi:10.1364/AO.41.003685.
  • Wandinger, U., Müller, D., Böckmann, C., Althausen, D., Matthias, V. and co-authors. 2002. Special Section: Lindenberg aerosol chracterization experiments (LACE): LAC 7 optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar. J. Geophys. Res.-Part D-Atmos. 107, LAC 7-1–LAC 7-20. doi:10.1029/2000JD000202.
  • Zieger, P., Fierz-Schmidhauser, R., Gysel, M., Ström, J., Henne, S. and co-authors. 2010. Effects of relative humidity on aerosol light scattering in the Arctic. Atmos. Chem. Phys. 10, 3875–3890. doi:10.5194/acp-10-3875-2010.
  • Zieger, P., Weingartner, E., Henzing, J., Moerman, M., Leeuw, G. D. and co-authors. 2011. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw. Atmos. Chem. Phys. 11, 2603–2624. doi:10.5194/acp-11-2603-2011.