1,697
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Estimating methane emissions using vegetation mapping in the taiga–tundra boundary of a north-eastern Siberian lowland

(By) ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, & show all

References

  • Andresen, C. G., Lara, M. J., Tweedie, C. E. and Lougheed, V. L. 2017. Rising plant-mediated methane emissions from arctic wetlands. Global Change Biol. 23, 1128–1139. doi:10.1111/gcb.13469
  • Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C. and co-authors. 2011. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60. doi:10.1890/100014
  • Bartsch, A., Hofler, A., Kroisleitner, C. and Trofaier, A. M. 2016. Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sens. 8, 979. doi:10.3390/rs8120979
  • Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. and Enrich-Prast, A. 2011. Freshwater methane emissions offset the continental carbon sink. Science 331, 50. doi:10.1126/science.1196808
  • Berner, L. T., Beck, P. S. A., Bunn, A. G. and Goetz, S. J. 2013. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Global Change Biol. 19, 3449–3462.
  • Blok, D., Heijmans, M., Schaepman-Strub, G., Kononov, A. V., Maximov, T. C. and co-authors. 2010. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Global Change Biol. 16, 1296–1305. doi:10.1111/j.1365-2486.2009.02110.x
  • Budishchev, A., Mi, Y., van Huissteden, J., Belelli-Marchesini, L., Schaepman-Strub, G. and co-authors. 2014. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling. Biogeosciences 11, 4651–4664. doi:10.5194/bg-11-4651-2014
  • CAFF. 2013. ABA 2013 Appendix 9.1–List and Distribution of All Arctic Vascular Plants. eds. F. J. A. Daniels, L. Gillespie and P. Michel. Conservation of Arctic Flora, Iceland. Online at: http://abds.is/publications/doc_download/134-aba-2013-appendix-9-1
  • Callaghan, T. V., Crawford, R. M. M., Eronen, M., Hofgaard, A., Payette, S. and co-authors. 2002. The dynamics of the tundra-taiga boundary: an overview and suggested coordinated and integrated approach to research. Ambio, 3–5, (Special Issue 12).
  • Campeau, A. and del Giorgio, P. A. 2014. Patterns in CH4 and CO2 concentrations across boreal rivers: major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Global Change Biol. 20, 1075–1088. doi:10.1111/gcb.12479
  • Campeau, A., Lapierre, J. F., Vachon, D. and del Giorgio, P. A. 2014. Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Quebec. Global Biogeochem. Cycles 28, 57–69. doi:10.1002/2013GB004685
  • Chasmer, L., Hopkinson, C., Veness, T., Quinton, W. and Baltzer, J. 2014. A decision-tree classification for low-lying complex land cover types within the zone of discontinuous permafrost. Remote Sens. Environ. 143, 73–84. doi:10.1016/j.rse.2013.12.016
  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V. and co-authors. 2013. Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 465–570.
  • Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46. doi:10.1016/0034-4257(91)90048-B
  • Davidson, S. J., Sloan, V. L., Phoenix, G. K., Wagner, R., Fisher, J. P. and co-authors. 2016. Vegetation type dominates the spatial variability in CH4 emissions across multiple Arctic tundra landscapes. Ecosystems 19, 1116–1132. doi:10.1007/s10021-016-9991-0
  • Desyatkin, A. R., Takakai, F., Fedorov, P. P., Nikolaeva, M. C., Desyatkin, R. V. and co-authors. 2009. CH4 emission from different stages of thermokarst formation in Central Yakutia, East Siberia. Soil Sci. Plant Nutr. 55, 558–570. doi:10.1111/j.1747-0765.2009.00389.x
  • Egorova, A. A. 2013. Flora of vascular plants of the resource reserve “Kytalyk” (Northeastern Yakutia). In: Proceedings of the 2nd International Conference on “Global Warming and the Human-Nature Dimension in Siberia: Social Adaptation to the Changes of the Terrestrial Ecosystem, with an Emphasis on Water Environments” & 7th Annual International Workshop “C/H2O/Energy Balance and Climate over Boreal and Arctic Regions with Special Emphasis on Eastern Eurasia”, Yakutsk, Russia. RIHN, Kyoto, Japan. 160–163. Online at : http://www.chikyu.ac.jp/siberia/2nd_International_Conference.pdf
  • Emmerton, C. A., Lesack, L. F. W. and Marsh, P. 2007. Lake abundance, potential water storage, and habitat distribution in the Mackenzie River Delta, western Canadian Arctic. Water Resour. Res. 43, W05419.
  • Epstein, H. E., Beringer, J., Gould, W. A., Lloyd, A. H., Thompson, C. D. and co-authors. 2004. The nature of spatial transitions in the Arctic. J. Biogeogr. 31, 1917–1933. doi:10.1111/j.1365-2699.2004.01140.x
  • Fan, R., Morozumi, T., Maximov, T. C. and Sugimoto, A. 2018. Effect of floods on the delta C-13 values in plant leaves: a study of willows in Northeastern Siberia. PeerJ 6, e5374. doi:10.7717/peerj.5374
  • Flessa, H., Rodionov, A., Guggenberger, G., Fuchs, H., Magdon, P. and co-authors. 2008. Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biol. 14, 2040–2056. doi:10.1111/j.1365-2486.2008.01633.x
  • Forbes, B. C., Fauria, M. M. and Zetterberg, P. 2010. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Global Change Biol. 16, 1542–1554. doi:10.1111/j.1365-2486.2009.02047.x
  • Frost, G. V. and Epstein, H. E. 2014. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biol. 20, 1264–1277. doi:10.1111/gcb.12406
  • Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S. and Machida, T. 2011. Regional methane emission from West Siberia mire landscapes. Environ. Res. Lett. 6, 045214. doi:10.1088/1748-9326/6/4/045214
  • Harding, R., Kuhry, P., Christensen, T. R., Sykes, M. T., Dankers, R. and co-authors. 2002. Climate feedbacks at the tundra-taiga interface. Ambio, 47–55.
  • Holtmeier, F. K. and Broll, G. 2005. Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecol. Biogeogr. 14, 395–410. doi:10.1111/j.1466-822X.2005.00168.x
  • Iwahana, G., Takano, S., Petrov, R. E., Tei, S., Shingubara, R. and co-authors. 2014. Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Polar Sci. 8, 96–113. doi:10.1016/j.polar.2014.01.005
  • Johansson, T., Malmer, N., Crill, P. M., Friborg, T., Akerman, J. H. and co-authors. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biol. 12, 2352–2369. doi:10.1111/j.1365-2486.2006.01267.x
  • Khitun, O. V., Koroleva, T. M., Chinenko, S. V., Petrovsky, V. V., Pospelova, E. B. and co-authors. 2016. Applications of local floras for floristic subdivision and monitoring vascular plant diversity in the Russian Arctic. Arct. Sci. 2, 103–126. doi:10.1139/as-2015-0010
  • Kling, G. W., Kipphut, G. W. and Miller, M. C. 1992. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240, 23–36. doi:10.1007/BF00013449
  • de Klerk, P., Donner, N., Karpov, N. S., Minke, M. and Joosten, H. 2011. Short-term dynamics of a low-centred ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quat. Sci. Rev. 30, 3013–3031. doi:10.1016/j.quascirev.2011.06.016
  • Kravtsova, V. I. and Loshkareva, A. R. 2013. Dynamics of vegetation in the tundra-taiga ecotone on the Kola Peninsula depending on climate fluctuations. Russ. J. Ecol. 44, 303–311. doi:10.1134/S1067413613040085
  • Lara, M. J., McGuire, A. D., Euskirchen, E. S., Tweedie, C. E., Hinkel, K. M. and co-authors. 2015. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Global Change Biol. 21, 1634–1651. doi:10.1111/gcb.12757
  • Liang, M. C., Sugimoto, A., Tei, S., Bragin, I. V., Takano, S. and co-authors. 2014. Importance of soil moisture and N availability to larch growth and distribution in the Arctic taiga-tundra boundary ecosystem, northeastern Siberia. Polar Sci. 8, 327–341. doi:10.1016/j.polar.2014.07.008
  • Lloyd, A. H., Rupp, T. S., Fastie, C. L. and Starfield, A. M. 2002. Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. J. Geophys. Res. Atmos. 108, 8161. doi:10.1029/2001JD000852
  • Loranty, M. M., Lieberman-Cribbin, W., Berner, L. T., Natali, S. M., Goetz, S. J. and co-authors. 2016. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environ. Res. Lett. 11, 105003.
  • Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. and Hornik, K. 2017. Cluster: Cluster Analysis Basics and Extensions. R package version 2.0.6. R CRAN.
  • Marsh, P. and Hey, M. 1989. The flooding hydrology of Mackenzie delta lakes near Inuvik, NWT, Canada. Arctic 42, 41–49.
  • Mastepanov, M., Sigsgaard, C., Strom, L., Tamstorf, M. P., Lund, M. and co-authors. 2013. Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences 10, 5139–5158. doi:10.5194/bg-10-5139-2013
  • Matveev, A., Laurion, I., Deshpande, B. N., Bhiry, N. and Vincent, W. F. 2016. High methane emissions from thermokarst lakes in subarctic peatlands. Limnol. Oceanogr. 61, S150–S164. doi:10.1002/lno.10311
  • Menyailo, O. V., Abraham, W. R. and Conrad, R. 2010. Tree species affect atmospheric CH4 oxidation without altering community composition of soil methanotrophs. Soil Biol. Biochem. 42, 101–107. doi:10.1016/j.soilbio.2009.10.005
  • Montesano, P. M., Nelson, R., Sun, G., Margolis, H., Kerber, A. and co-authors. 2009. MODIS tree cover validation for the circumpolar taiga-tundra transition zone. Remote Sens. Environ. 113, 2130–2141. doi:10.1016/j.rse.2009.05.021
  • Morishita, T., Hatano, R. and Desyatkin, R. V. 2003. CH4 flux in an Alas ecosystem formed by forest disturbance near Yakutsk, eastern Siberia, Russia. Soil Sci. Plant Nutr. 49, 369–377. doi:10.1080/00380768.2003.10410022
  • Muster, S., Langer, M., Heim, B., Westermann, S. and Boike, J. 2012. Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia. Tellus B 64, 17301. doi:10.3402/tellusb.v64i0.17301
  • Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J. and co-authors. 2013. Anthropogenic and natural radiative forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Nakano, T., Inoue, G. and Fukuda, M. 2004. Methane consumption and soil respiration by a birch forest soil in West Siberia. Tellus B 56, 223–229. doi:10.1111/j.1600-0889.2004.00102.x
  • Nauta, A. L., Heijmans, M., Blok, D., Limpens, J., Elberling, B. and co-authors. 2015. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70. doi:10.1038/nclimate2446
  • Nicholson, B. J., Gignac, L. D. and Bayley, S. E. 1996. Peatland distribution along a north-south transect in the Mackenzie River Basin in relation to climatic and environmental gradients. Vegetatio 126, 119–133. doi:10.1007/BF00045599
  • Nilsson, M., Mikkela, C., Sundh, I., Granberg, G., Svensson, B. H. and co-authors. 2001. Methane emission from Swedish mires: national and regional budgets and dependence on mire vegetation. J. Geophys. Res. 106, 20847–20860. doi:10.1029/2001JD900119
  • Olefeldt, D., Turetsky, M. R., Crill, P. M. and McGuire, A. D. 2013. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biol. 19, 589–603. doi:10.1111/gcb.12071
  • Pajunen, A. M. 2009. Environmental and biotic determinants of growth and height of Arctic willow shrubs along a latitudinal gradient. Arct. Antarct. Alp. Res. 41, 478–485. doi:10.1657/1938-4246-41.4.478
  • Parmentier, F. J. W., van Huissteden, J., van der Molen, M. K., Schaepman-Strub, G., Karsanaev, S. A. and co-authors. 2011a. Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia. J. Geophys. Res. 116, G03016.
  • Parmentier, F. J. W., van Huissteden, J., Kip, N., den Camp, H., Jetten, M. S. M. and co-authors. 2011. The role of endophytic methane-oxidizing bacteria in submerged Sphagnum in determining methane emissions of Northeastern Siberian tundra. Biogeosciences 8, 1267–1278. doi:10.5194/bg-8-1267-2011
  • R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Online at: https://www.R-project.org/
  • Ranson, K. J., Montesano, P. M. and Nelson, R. 2011. Object-based mapping of the circumpolar taiga-tundra ecotone with MODIS tree cover. Remote Sens. Environ. 115, 3670–3680. doi:10.1016/j.rse.2011.09.006
  • Roulet, N. T., Jano, A., Kelly, C. A., Klinger, L. F., Moore, T. R. and co-authors. 1994. Role of the Hudson-Bay Lowland as a source of atmospheric methane. J. Geophys. Res. 99, 1439–1454. doi:10.1029/93JD00261
  • Sachs, T., Giebels, M., Boike, J. and Kutzbach, L. 2010. Environmental controls on CH4 emission from polygonal tundra on the microsite scale in the Lena river delta, Siberia. Global Change Biol. 16, 3096–3110.
  • Schickhoff, U., Walker, M. D. and Walker, D. A. 2002. Riparian willow communities on the Arctic slope of Alaska and their environmental relationships: a classification and ordination analysis. Phytocoenologia 32, 145–204. doi:10.1127/0340-269X/2002/0032-0145
  • Schneider, J., Grosse, G. and Wagner, D. 2009. Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM + data and its application for upscaling of methane emissions. Remote Sens. Environ. 113, 380–391. doi:10.1016/j.rse.2008.10.013
  • Semiletov, I. P., Pipko, I. I., Shakhova, N. E., Dudarev, O. V., Pugach, S. P. and co-authors. 2011. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences 8, 2407–2426. doi:10.5194/bg-8-2407-2011
  • Settele, J., Scholes, R., Betts, R., Bunn, S., Leadley, P. and co-authors. 2014. Terrestrial and inland water systems, In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
  • Shingubara, R., Sugimoto, A., Murase, J., Tei, S., Takano, S. and co-authors. 2016. Multi-year response of CH4 efflux to wetting at Indigirka Lowland in northeastern Siberia. In: Japan Geoscience Union Meeting, Chiba, Japan, Japan Geoscience Union, Japan.
  • Sidorchuk, A. and Matveev, B. 1994. Channel processes and erosion rates in the rivers of the Yamal Peninsula in western Siberia. In: Proceedings of the Symposium on Variability in Stream Erosion and Sediment Transport, Canberra, December 1994. IAHS Publ. 224. 197–202.
  • Sidorchuk, A. Y., Panin, A. V., Borisova, O. K., Elias, S. A. and Syvistki, J. P. 2000. Channel morphology and river flow in the northern Russian Plain in the Late Glacial and Holocene. Int. J. Earth Sci. 89, 541–549. doi:10.1007/s005310000132
  • Sjogersten, S. and Wookey, P. A. 2002. Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biol. Biochem. 34, 1633–1646. doi:10.1016/S0038-0717(02)00147-5
  • Sjogersten, S. and Wookey, P. A. 2009. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38, 2–10. doi:10.1579/0044-7447-38.1.2
  • Skre, O., Baxter, R., Crawford, R. M. M., Callaghan, T. V. and Fedorkov, A. 2002. How will the tundra-taiga interface respond to climate change? Ambio, 37–46. (Special Issue 12).
  • Soja, A. J., Tchebakova, N. M., French, N. H. F., Flannigan, M. D., Shugart, H. H. and co-authors. 2007. Climate-induced boreal forest change: predictions versus current observations. Global Planet. Change 56, 274–296. doi:10.1016/j.gloplacha.2006.07.028
  • Striegl, R. G., Dornblaser, M. M., McDonald, C. P., Rover, J. R. and Stets, E. G. 2012. Carbon dioxide and methane emissions from the Yukon River system. Global Biogeochem. Cycles 26, GB0E05.
  • Strom, L., Falk, J. M., Skov, K., Jackowicz-Korczynski, M., Mastepanov, M. and co-authors. 2015. Controls of spatial and temporal variability in CH4 flux in a high arctic fen over three years. Biogeochemistry 125, 21–35. doi:10.1007/s10533-015-0109-0
  • Takakai, F., Desyatkin, A. R., Lopez, C. M. L., Fedorov, A. N., Desyatkin, R. V. and co-authors. 2008. CH4 and N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia. J. Geophys. Res. Biogeosci. 113, G02002.
  • Takeuchi, W., Tamura, M. and Yasuoka, Y. 2003. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV. Remote Sens. Environ. 85, 21–29. doi:10.1016/S0034-4257(02)00183-9
  • Tchebakova, N. M., Parfenova, E. and Soja, A. J. 2009. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate. Environ. Res. Lett. 4, 045013. doi:10.1088/1748-9326/4/4/045013
  • Tei, S., Sugimoto, A., Liang, M. C., Yonenobu, H., Matsuura, Y. and co-authors. 2017. Radial growth and physiological response of coniferous trees to Arctic amplification. J. Geophys. Res. Biogeosci. 122, 2786–2803. doi:10.1002/2016JG003745
  • Troeva, E., Isaev, A., Cherosov, M. and Karpov, N. 2010. The Far North: Plant Biodiversity and Ecology of Yakutia. Springer, Dordrecht.
  • van Huissteden, J., Maximov, T. C., Kononov, A. V. and Dolman, A. J. 2008. Summer soil CH4 emission and uptake in taiga forest near Yakutsk, Eastern Siberia. Agric. For. Meteorol. 148, 2006–2012. doi:10.1016/j.agrformet.2008.08.008
  • Virtanen, T. and Ek, M. 2014. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27, 4–12. doi:10.1016/j.jag.2013.05.010
  • Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. and Chapin, F. S. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75. doi:10.1038/nature05040
  • Wanninkhof, R. 1992. Relationship between wind-speed and gas-exchange over the ocean. J. Geophys. Res. 97, 7373–7382. doi:10.1029/92JC00188