1,065
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Trajectory-based analysis on the source areas and transportation pathways of atmospheric particulate matter over Eastern Finland

ORCID Icon, , &
Pages 1-16 | Received 05 Dec 2019, Accepted 13 Jul 2020, Published online: 04 Aug 2020

References

  • Albrecht, B. A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227–1230. doi:10.1126/science.245.4923.1227
  • Ashbaugh, L. L., Malm, W. C. and Sadeh, W. Z. 1985. A residence time probability analysis of sulphur concentrations at Grand-Canyon National Park. Atmos. Environ. 19, 1263–1270. doi:10.1016/0004-6981(85)90256-2
  • Babu, S. S., Chaubey, J. P., Krishna Moorthy, K., Gogoi, M. M., Kompalli, S. K. and co-authors. 2011. High altitude (∼4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: Seasonal heterogeneity and source apportionment. J. Geophys. Res. 116, D24201.
  • Begum, B. A., Kim, E., Jeong, C. H., Lee, D. W. and Hopke, P. K. 2005. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ. 39, 3719–3724. doi:10.1016/j.atmosenv.2005.03.008
  • Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T. and co-authors. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118, 5380–5552. doi:10.1002/jgrd.50171
  • Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R. and co-authors. 2007. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26, 185–222. doi:10.1002/mas.20115
  • Cappa, C. D., Zhang, X., Russell, L. M., Collier, S., Lee, A. K. Y. and co-authors. 2019. Light absorption by ambient black and brown carbon and its dependence on black carbon coating state for two California, USA, cities in winter and summer. J. Geophys. Res. Atmos. 124, 1550–1577. doi:10.1029/2018JD029501
  • DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T. and co-authors. 2006. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. Anal. Chem. 78, 8281–8289. doi:10.1021/ac061249n
  • Flanner, M. G., Zender, C. S., Randerson, J. T. and Rasch, P. J. 2007. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, D11202. doi:10.1029/2006JD008003
  • Franke, V., Zieger, P., Wideqvist, U., Acosta Navarro, J. C., Leck, C. and co-authors. 2017. Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden. Tellus B: Chem. Phys. Meteorol. 69, 1353387. doi:10.1080/16000889.2017.1353387
  • Goldstein, A. H., Koven, C. D., Heald, C. L. and Fung, I. Y. 2009. Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States. Proc. Natl. Acad. Sci. USA 106, 8835–8840. doi:10.1073/pnas.0904128106
  • Hansen, J. and Nazarenko, L. 2004. Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA 101, 423–428. doi:10.1073/pnas.2237157100
  • Hansen, J., Sato, M. and Ruedy, R. 1997. Radiative forcing and climate response. J. Geophys. Res. 102, 6831–6864. doi:10.1029/96JD03436
  • Hao, L. Q., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H. and co-authors. 2013. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 47, 2645–2653. doi:10.1021/es302889w
  • Haywood, J. and Boucher, O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 38, 513–543.
  • Heikkinen, L., Äijälä, M., Riva, M., Luoma, K., Dällenbach, K. and co-authors. 2020. Long-term sub-micrometer aerosol chemical composition in the boreal forest: Inter- and intra-annual variability. Atmos. Chem. Phys. 20, 3151–3180. doi:10.5194/acp-20-3151-2020
  • Hellén, H., Praplan, A. P., Tykkä, T., Ylivinkka, I., Vakkari, V. and co-authors. 2018. Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest. Atmos. Chem. Phys. 18, 13839–13863. doi:10.5194/acp-18-13839-2018
  • Huang, K., Fu, J. S., Prikhodko, V. Y., Storey, J. M., Romanov, A. and co-authors. 2015. Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation. J. Geophys. Res.-Atmos. 120, 11306–11333. doi:10.1002/2015JD023358
  • Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y. and co-authors. 2010. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos. Chem. Phys. 10, 8933–8945. doi:10.5194/acp-10-8933-2010
  • Hussein, T., Molgaard, B., Hannuniemi, H., Martikainen, J., Jarvi, L. and co-authors. 2014. Fingerprints of the urban particle number size distribution in Helsinki, Finland: Local versus regional characteristics. Boreal Environ. Res. 19, 1–20.
  • Hwang, I. and Hopke, P. K. 2007. Estimation of source apportionment and potential source locations of PM2.5 at a west coastal IMPROVE site. Atmos. Environ. 41, 506–518. doi:10.1016/j.atmosenv.2006.08.043
  • Hyvärinen, A. P., Kolmonen, P., Kerminen, V. M., Virkkula, A., Leskinen, A. and co-authors. 2011. Aerosol black carbon at five background measurement sites over Finland, a gateway to the Arctic. Atmos. Environ. 45, 4042–4050. doi:10.1016/j.atmosenv.2011.04.026
  • Jayne, J. T., Leard, D. C., Zhang, X. F., Davidovits, P., Smith, K. A. and co-authors. 2000. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol. 33, 49–70. doi:10.1080/027868200410840
  • Koch, D. and Del Genio, A. D. 2010. Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys. 10, 7685–7696. doi:10.5194/acp-10-7685-2010
  • Leskinen, A., Arola, A., Komppula, M., Portin, H., Tiitta, P. and co-authors. 2012. Seasonal cycle and source analyses of aerosol optical properties in a semi-urban environment at Puijo station in Eastern Finland. Atmos. Chem. Phys. 12, 5647–5659. doi:10.5194/acp-12-5647-2012
  • Lohmann, U. and Feichter, J. 2005. Global indirect aerosol effects: A review. Atmos. Chem. Phys. 5, 715–737. doi:10.5194/acp-5-715-2005
  • Matsui, H., Hamilton, D. S. and Mahowald, N. M. 2018. Black carbon radiative effects highly sensitive to emitted particle size when resolving mixing-state diversity. Nat. Commun. 9, 3446. doi:10.1038/s41467-018-05635-1
  • McGuire, M. L., Chang, R. Y. W., Slowik, J. G., Jeong, C. H., Healy, R. M. and co-authors. 2014. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra. Atmos. Chem. Phys. 14, 8017–8042. doi:10.5194/acp-14-8017-2014
  • Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J. and co-authors. 2010. Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry. Atmos. Chem. Phys. 10, 4625–4641. doi:10.5194/acp-10-4625-2010
  • Nicolás, J., Chiari, M., Crespo, J., Galindo, N., Lucarelli, F. and co-authors. 2011. Assessment of potential source regions of PM2.5 components at a southwestern Mediterranean site. Tellus B 63, 96–106. doi:10.1111/j.1600-0889.2010.00510.x
  • Paasonen, P., Asmi, A., Petäjä, T., Kajos, M. K., Äijälä, M. and co-authors. 2013. Warming-induced increase in aerosol number concentration likely to moderate climate change. Nat. Geosci. 6, 438–442. doi:10.1038/ngeo1800
  • Paatero, P. and Tapper, U. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. doi:10.1002/env.3170050203
  • Petzold, A., Kramer, H. and Schönlinner, M. 2002. Continuous measurement of atmospheric black carbon using a multi-angle absorption photometer. Environ. Sci. Pollut. Res. Special Issue 4, 78–82.
  • Portin, H., Leskinen, A., Hao, L., Kortelainen, A., Miettinen, P. and co-authors. 2014. The effect of local sources on particle size and chemical composition and their role in aerosol-cloud interactions at Puijo measurement station. Atmos. Chem. Phys. 14, 6021–6034. doi:10.5194/acp-14-6021-2014
  • Quaas, J., Arola, A., Cairns, B., Christensen, M., Deneke, H. and co-authors. 2020. Constraining the Twomey effect from satellite observations: Issues and perspectives. Atmos. Chem. Phys. Discuss., in review, 1–31. doi:10.5194/acp-2020-279
  • Reddington, C. L., McMeeking, G., Mann, G. W., Coe, H., Frontoso, M. G. and co-authors. 2013. The mass and number size distributions of black carbon aerosol over Europe. Atmos. Chem. Phys. 13, 4917–4939. doi:10.5194/acp-13-4917-2013
  • Riuttanen, L., Hulkkonen, M., Dal Maso, M., Junninen, H. and Kulmala, M. 2013. Trajectory analysis of atmospheric transport of fine particles, SO2, NOx and O3 to the SMEAR II station in Finland in 1996–2008. Atmos. Chem. Phys. 13, 2153–2164. doi:10.5194/acp-13-2153-2013
  • Schneider, J., Mertes, S., van Pinxteren, D., Herrmann, H. and Borrmann, S. 2017. Uptake of nitric acid, ammonia, and organics in orographic clouds: Mass spectrometric analyses of droplet residual and interstitial aerosol particles. Atmos. Chem. Phys. 17, 1571–1593. doi:10.5194/acp-17-1571-2017
  • Schneider, J., Weimer, S., Drewnick, F., Borrmann, S., Helas, G. and co-authors. 2006. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles. Int. J. Mass Spectrom. 258, 37–49. doi:10.1016/j.ijms.2006.07.008
  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D. and co-authors. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077. doi:10.1175/BAMS-D-14-00110.1
  • Stohl, A. 1996. Trajectory statistics – A new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 30, 579–587. doi:10.1016/1352-2310(95)00314-2
  • Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P. and co-authors. 2013. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 13, 8833–8855. doi:10.5194/acp-13-8833-2013
  • Su, L., Yuan, Z., Fung, J. C. and Lau, A. K. 2015. A comparison of HYSPLIT backward trajectories generated from two GDAS datasets. Sci. Total Environ. 506–507, 527–537. doi:10.1016/j.scitotenv.2014.11.072
  • Sun, J. Y., Zhang, Q., Canagaratna, M. R., Zhang, Y. M., Ng, N. L. and co-authors. 2010. Highly time- and size-resolved characterization of submicron aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer. Atmos. Environ. 44, 131–140. doi:10.1016/j.atmosenv.2009.03.020
  • Sun, Y. L., Du, W., Wan, Q. Q., Zhang, Q., Chen, C. and co-authors. 2015. Real-time characterization of aerosol particle composition above the urban canopy in Beijing: Insights into the interactions between the atmospheric boundary layer and aerosol chemistry. Environ. Sci. Technol. 49, 11340–11347. doi:10.1021/acs.est.5b02373
  • Sun, Y., Xu, W., Zhang, Q., Jiang, Q., Canonaco, F. and co-authors. 2018. Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmos. Chem. Phys. 18, 8469–8489. doi:10.5194/acp-18-8469-2018
  • Twomey, S. 1974. Pollution and the planetary albedo. Atmos. Environ. 8, 1251–1256. doi:10.1016/0004-6981(74)90004-3
  • Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R. and Jimenez, J. L. 2009. Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. 9, 2891–2918. doi:10.5194/acp-9-2891-2009
  • Väisänen, O., Ruuskanen, A., Ylisirniö, A., Miettinen, P., Portin, H. and co-authors. 2016. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation. Atmos. Chem. Phys. 16, 10385–10398. doi:10.5194/acp-16-10385-2016
  • Weimer, S., Alfarra, M. R., Schreiber, D., Mohr, M., Prevot, A. S. H. and co-authors. 2008. Organic aerosol mass spectral signatures from wood-burning emissions: Influence of burning conditions and wood type. J. Geophys. Res. 113, D10304.
  • Zhang, Q., Worsnop, D. R., Canagaratna, M. R. and Jimenez, J. L. 2005. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: Insights into sources and processes of organic aerosols. Atmos. Chem. Phys. 5, 3289–3311.