0
Views
0
CrossRef citations to date
0
Altmetric
Review

Dietary strategies to treat hyperhomocysteinaemia based on the biochemistry of homocysteine: a review

Pages 93-100 | Received 13 Jan 2014, Accepted 12 Apr 2014, Published online: 31 May 2016

References

  • Castañon MM, Lauricella AM, Kordich L, Quintana I. Plasma homocysteine cutoff values for venous thrombosis. Clin Chem Lab Med. 2007;45(2):232‑236.
  • Humphrey LL, Fu R, Rogers K, et al. Homocysteine level and coronary heart disease incidence: a systematic review and meta‑analysis. Mayo Clin Proc. 2008;83(11):1203‑1212.
  • Yang J, Hu X, Zhang Q, et al. Homocysteine level and risk of fracture: a meta‑analysis and systematic review. Bone. 2012;51(3):376‑382.
  • Zintzaras E. Genetic variants of homocysteine/folate metabolism pathway and risk of inflammatory bowel disease: a synopsis and meta‑analysis of genetic association studies. Biomarkers. 2010;15(1):69‑79.
  • Kohaar I, Kumar J, Thakur N, et al. Homocysteine levels are associated with cervical cancer independent of methylene tetrahydrofolate reductase gene (MTHFR) polymorphisms in Indian population. Biomarkers. 2010;15(1):61‑68.
  • Jacobsen DW. Practical chemistry of homocysteine and other thiols. In: Carmel R, Jacobsen DW, editors. Homocysteine in health and disease. Cambridge: Cambridge University Press, 2001; p. 9‑20.
  • Scott JM. Genetic variation of homocysteine metabolism and atherosclerosis. In: Bachmann C, Koletzko B, editors. Genetic expression and nutrition. Nestlé Nutrition Workshop Series, Pediatric Program, Vol 50 Nestec Ltd. Philadelphia: Vevey/Lippincott Williams and Wilkins, 2003; p. 1‑24.
  • Weir DG, Scott JM. Homocysteine as a risk factor for cardiovascular and related disease: nutritional implications. Nutr Res Rev. 1998;11(2):311‑338.
  • Mansoor MA, Svardal AM, Ueland PM. Determination of the in vivo redox status of cysteine, cysteinylglycine, homocysteine, and glutathione in human plasma. Anal Biochem. 1992;200(2):218‑229.
  • Devlin AM, Clarke R, Birks J, et al. Interactions among polymorphisms in folate‑metabolizing genes and serum total homocysteine concentrations in a healthy elderly population. Am J Clin Nutr. 2006;83(3):708‑713.
  • Williams KT, Schalinske KL. New insights into the regulation of methyl group and homocysteine metabolism. J Nutr. 2007;137(2):311‑314.
  • Coppola A, Davi G, De Stefano V, et al. Homocysteine, coagulation, platelet function, and thrombosis. Semin Thromb Hemost. 2000;26(3):243‑254.
  • Guenther BD, Sheppard CA, Tran P, et al. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol. 1999;6(4):359‑365.
  • Evans JC, Huddler DP, Jiracek J, et al. Betaine‑homocysteine methyltransferase: zinc in a distorted barrel. Structure. 2002;10(9):1159‑1171.
  • Park EI, Garrow TA. Interaction between dietary methionine and methyl donor intake on rat liver betaine‑homocysteine methyltransferase gene expression and organization of the human gene. J Biol Chem. 1999;274(12):7816‑7824.
  • Finkelstein JD. Regulation of homocysteine metabolism. In: Carmel R, Jacobsen DW, editors. Homocysteine in health and disease. Cambridge: Cambridge University Press, 2001; p. 92‑99.
  • Rosenblatt DS. Inherited disorders of folate transport and metabolism. In: Scriver CR, Beaudet AI, Sly WS, Valle D, editors. The metabolic basis of inherited disease. New York: McGraw‑Hill, 1989; p. 2049‑2064.
  • Eikelboom JW, Lonn E, Genest J Jr, et al. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med. 1999;131(5):363‑375.
  • Malinow MR, Bostom AG, Krauss RM. Homocyst(e)ine, diet, and cardiovascular diseases: a statement for healthcare professionals from the Nutrition Committee, American Heart Association. Circulation. 1999;99(1):178‑182.
  • Hanson NQ, Eckfeldt JH, Schwichtenberg K, et al. Interlaboratory variation of plasma total homocysteine measurements: results of three successive homocysteine proficiency testing surveys. Clin Chem. 2002;48(9):1539‑1545.
  • Ubbink JB, Delport R, Riezler R, Vermaak WJ. Comparison of three different plasma homocysteine assays with gas chromatography‑mass spectrometry. Clin Chem. 1999;45(5):670‑675.
  • Ubbink JB. Assay methods for the measurement of total homocyst(e)ine in plasma. Semin Thromb Hemost. 2000;26(3):233‑241.
  • Fuso A, Nicolia V, Cavallaro RA, et al. B‑vitamin deprivation induces hyperhomocysteinemia and brain S‑adenosylhomocysteine, depletes brain S‑adenosylmethionine, and enhances PS1 and BACE expression and amyloid‑beta deposition in mice. Mol Cell Neurosci. 2008;37(4):731‑746.
  • Clarke R, Armitage J. Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine‑lowering vitamin supplements. Semin Thromb Hemost. 2000;26(3):341‑348.
  • Bates CJ, Mansoor MA, van der Pols J, et al. Plasma total homocysteine in a representative sample of 972 British men and women aged 65 and over. Eur J Clin Nutr. 1997;51(10):691‑697.
  • Beccia M, Mele MC, Ferrari M, et al. Young stroke and basal plasma and post‑methionine load homocysteine and cysteine levels 1 year after the acute event: do plasma folates make the difference? Eur J Neurol. 2004;11(4):269‑275.
  • Verhoef P, de Groot LC. Dietary determinants of plasma homocysteine concentrations. Semin Vasc Med. 2005;5(2):110‑123.
  • Chiuve SE, Giovannucci EL, Hankinson SE, et al. Alcohol intake and methylenetetrahydrofolate reductase polymorphism modify the relation of folate intake to plasma homocysteine. Am J Clin Nutr. 2005;82(1):155‑162.
  • Jacques PF, Bostom AG, Williams RR, et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation. 1996;93(1):7‑9.
  • Bailey LB. Folate, methyl‑related nutrients, alcohol, and the MTHFR 677C‑‑> T polymorphism affect cancer risk: intake recommendations. J Nutr. 2003;133(11 Suppl 1):3748S‑3753S.
  • Verhaar MC, Stroes E, Rabelink TJ. Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2002;22(1):6‑13.
  • Winkels RM, Brouwer IA, Siebelink E, et al. Bioavailability of food folates is 80% of that of folic acid. Am J Clin Nutr. 2007;85(2):465‑473.
  • Anderson JL, Jensen KR, Carlquist JF, et al. Effect of folic acid fortification of food on homocysteine‑related mortality. Am J Med. 2004;116(3):158‑164.
  • Homocysteine lowering trialists’ collaboration. Dose‑dependent effects of folic acid on blood concentrations of homocysteine: a meta‑analysis of the randomized trials. Am J Clin Nutr. 2005;82(4):806‑812.
  • Wilmink HW, Stroes ES, Erkelens WD, et al. Influence of folic acid on postprandial endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2000;20(1):185‑188.
  • Usui M, Matsuoka H, Miyazaki H, et al. Endothelial dysfunction by acute hyperhomocyst(e) inaemia: restoration by folic acid. Clin Sci (Lond). 1999;96(3):235‑239.
  • Verhaar MC, Wever RM, Kastelein JJ, et al. 5‑methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation. 1998;97(3):237‑241.
  • Stroes ES, van Faassen EE, Yo M, et al. Folic acid reverts dysfunction of endothelial nitric oxide synthase. Circ Res. 2000;86(11):1129‑1134.
  • Buemi M, Marino D, Di Pasquale G, et al. Effects of homocysteine on proliferation, necrosis and apoptosis of vascular smooth muscle cells in culture and influence of folic acid. Thromb Res. 2001;104(3):207‑213.
  • Mager A, Orvin K, Koren‑Morag N, et al. Impact of homocysteine‑lowering vitamin therapy on long‑term outcome of patients with coronary artery disease. Am J Cardiol. 2009;104(6):745‑749.
  • Albert CM, Cook NR, Gaziano JM, et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA. 2008;299(17):2027‑2036.
  • Powers HJ. Riboflavin (vitamin B‑2) and health. Am J Clin Nutr. 2003;77(6):1352‑1360.
  • Jacques PF, Bostom AG, Wilson PW, et al. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr. 2001;73(3):613‑621.
  • Hustad S, Ueland PM, Vollset SE, et al. Riboflavin as a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate reductase C677T polymorphism. Clin Chem. 2000;46(8 Pt 1):1065‑1071.
  • Moat SJ, Ashfield‑Watt PA, Powers HJ, et al. Effect of riboflavin status on the homocysteinelowering effect of folate in relation to the MTHFR (C677T) genotype. Clin Chem. 2003;49(2):295‑302.
  • Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990;1(5):228‑237.
  • Lakshmi AV, Bamji MS. Regulation of blood pyridoxal phosphate in riboflavin deficiency in man. Nutr Metab. 1976;20(4):228‑233.
  • McKinley MC, McNulty H, McPartlin J, et al. Low‑dose vitamin B‑6 effectively lowers fasting plasma homocysteine in healthy elderly persons who are folate and riboflavin replete. Am J Clin Nutr. 2001;73(4):759‑764.
  • Bleie Ø, Refsum H, Ueland PM, et al. Changes in basal and postmethionine load concentrations of total homocysteine and cystathionine after B vitamin intervention. Am J Clin Nutr. 2004;80(3):641‑648.
  • Obersby D, Chappell DC, Dunnett A, Tsiami AA. Plasma total homocysteine status of vegetarians compared with omnivores: a systematic review and meta‑analysis. Br J Nutr. 2013;109(5):785‑794.
  • Mudd SH, Levy HL, Abeles RH, Jennedy JP Jr. A derangement in B 12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria. Biochem Biophys Res Commun. 1969;35(1):121‑126.
  • Snyder F, Cornatzer WE, Simonson GE. Comparative lipotropic and lipide phosphorylating effects of choline, betaine and inositol. Proc Soc Exp Biol Med. 1957;96(3):670‑672.
  • Shoob HD, Sargent RG, Thompson SJ, et al. Dietary methionine is involved in the etiology of neural tube defect‑affected pregnancies in humans. J Nutr. 2001;131(10):2653‑2658.
  • Bostom AG, Jacques PF, Nadeau MR, et al. Post‑methionine load hyperhomocysteinemia in persons with normal fasting total plasma homocysteine: initial results from the NHLBI Family Heart Study. Atherosclerosis. 1995;116(1):147‑151.
  • Ubbink JB, Vermaak WJ, Delport R, et al. Effective homocysteine metabolism may protect South African blacks against coronary heart disease. Am J Clin Nutr. 1995;62(4):802‑808.
  • Simporè J, Pignatelli S, Meli C, et al. Nutritional and racial determinants of the increase in plasma homocysteine levels after methionine loading. Curr Ther Res. 2002:63(7):459‑474.
  • Den Heijer M, Graafsma S, Lee SY, et al. Homocysteine levels‑‑before and after methionine loading: in 51 Dutch families. Eur J Hum Genet. 2005;13(6):753‑762.
  • Domagala TB, Undas A, Sydor WJ, Szczeklik A. Thrombin formation in platelet‑rich plasma after oral methionine loading: preliminary report. Thromb Res. 2002;105(6):503‑506.
  • Bellamy MF, McDowell IF, Ramsey MW, et al. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation. 1998;98(18):1848‑1852.
  • Chambers JC, McGregor A, Jean‑Marie J, et al. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation. 1999;99(9):1156‑1160.
  • Cho E, Zeisel SH, Jacques P, et al. Dietary choline and betaine assessed by food‑frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am J Clin Nutr. 2006;83(4):905‑911.
  • Olthof MR, Verhoef P. Effects of betaine intake on plasma homocysteine concentrations and consequences for health. Curr Drug Metab. 2005;6(1):15‑22.
  • Zeisel SH. Gene response elements, genetic polymorphisms and epigenetics influence the human dietary requirement for choline. IUBMB Life. 2007;59 (6):380‑387.
  • Barak AJ, Beckenhauer HC, Mailliard ME, et al. Betaine lowers elevated s‑adenosylhomocysteine levels in hepatocytes from ethanol‑fed rats. J Nutr. 2003;133(9):2845‑2848.
  • Chiuve SE, Giovannucci EL, Hankinson SE, et al. The association between betaine and choline intakes and the plasma concentrations of homocysteine in women. Am J Clin Nutr. 2007;86(4):1073‑1081.
  • Schwahn BC, Laryea MD, Chen Z, et al. Betaine rescue of an animal model with methylenetetrahydrofolate reductase deficiency. Biochem J. 2004;382(Pt 3):831‑840.
  • De Bree A, Verschuren WM, et al. Lifestyle factors and plasma homocysteine concentrations in a general population sample. Am J Epidemiol. 2001;154(2):150‑154.
  • Husemoen LL, Thomsen TF, Fenger M, Jørgensen T. Effect of lifestyle factors on plasma total homocysteine concentrations in relation to MTHFR(C677T) genotype. Inter99 (7). Eur J Clin Nutr. 2004;58(8):1142‑1150.
  • Nygård O, Refsum H, Ueland PM, et al. Coffee consumption and plasma total homocysteine: the Hordaland Homocysteine Study. Am J Clin Nutr. 1997;65(1):136‑143.
  • Stolzenberg‑Solomon RZ, Miller ER 3rd, Maguire MG, et al. Association of dietary protein intake and coffee consumption with serum homocysteine concentrations in an older population. Am J Clin Nutr. 1999;69(3):467‑475.
  • Nieto FJ, Comstock GW, Chambless LE, Malinow RM. Coffee consumption and plasma homocyst(e)ine: results from the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 1997;66(6):1475‑1477.
  • Rasmussen LB, Ovesen L, Bülow I, et al. Folate intake, lifestyle factors, and homocysteine concentrations in younger and older women. Am J Clin Nutr. 2000;72(5):1156‑1163.
  • Saw SM, Yuan JM, Ong CN, et al. Genetic, dietary, and other lifestyle determinants of plasma homocysteine concentrations in middle‑aged and older Chinese men and women in Singapore. Am J Clin Nutr. 2001;73(2):232‑239.
  • Christensen B, Mosdol A, Retterstol L, et al. Abstention from filtered coffee reduces the concentrations of plasma homocysteine and serum cholesterol: a randomized controlled trial. Am J Clin Nutr. 2001;74(3):302‑307.
  • Grubben MJ, Boers GH, Blom HJ, et al. Unfiltered coffee increases plasma homocysteine concentrations in healthy volunteers: a randomized trial. Am J Clin Nutr. 2000;71(2):480‑484.
  • Urgert R, van Vliet T, Zock PL, Katan MB. Heavy coffee consumption and plasma homocysteine: a randomized controlled trial in healthy volunteers. Am J Clin Nutr. 2000;72(5):1107‑1110.
  • Olthof MR, Hollman PC, Zock PL, Katan MB. Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr. 2001;73(3):532‑538.
  • Vollset SE, Nygârd O, Refsum H, Ueland PM. Coffee and homocysteine. Am J Clin Nutr. 2000;71(2):403‑404.
  • Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339(8808):1523‑1526.
  • Corrao G, Bagnardi V, Zambon A, La Vecchia C. A meta‑analysis of alcohol consumption and the risk of 15 diseases. Prev Med. 2004;38(5):613‑619.
  • Yuan JM, Ross RK, Gao YT, et al. Follow up study of moderate alcohol intake and mortality among middle aged men in Shanghai, China. BMJ. 1997;314(7073):18‑23.
  • Van Heerden IV, Parry CDH. If you drink alcohol, drink sensibly. South Afr J Clin Nutr. 2001;14(3):S71‑S77.
  • Bagnardi V, Zatonski W, Scotti L, et al. Does drinking pattern modify the effect of alcohol on the risk of coronary heart disease? Evidence from a meta‑analysis. J Epidemiol Community Health. 2008;62(7):615‑619.
  • Carmel R, James SJ. Alcohol abuse: an important cause of severe hyperhomocysteinemia. Nutr Rev. 2002;60 (7 Pt 1):215‑221.
  • Cravo ML, Glória LM, Selhub J, et al. Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B‑12, and vitamin B‑6 status. Am J Clin Nutr. 1996;63 (2):220‑224.
  • Gudnason V, Stansbie D, Scott J, et al. C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): its frequency and impact on plasma homocysteine concentration in different European populations. EARS group. Atherosclerosis. 1998;136(2):347‑354.
  • Lussier‑Cacan S, Xhignesse M, Piolot A, et al. Plasma total homocysteine in healthy subjects: sex‑specific relation with biological traits. Am J Clin Nutr. 1996;64(4):587‑593.
  • Mayer O Jr, Simon J, Rosolová H. A population study of the influence of beer consumption on folate and homocysteine concentrations. Eur J Clin Nutr. 2001;55(7):605‑609.
  • Vollset SE, Hygard O, Dvale G, et al. The Hordaland Homocysteine Study: Lifestyle and total plasma homocysteine in Western Norway. In: Graham I, Refsum H, Rosenberg IH, Ueland PM, editors. Homocysteine metabolism: from basic science to clinical medicine. Massachusetts: Kluwer Academic Publishers, 1997; p. 177‑182.
  • Bleich S, Bleich K, Kropp S, et al. Moderate alcohol consumption in social drinkers raises plasma homocysteine levels: a contradiction to the “French paradox”? Alcohol Alcohol. 2001;36(3):189‑192.
  • Van der Gaag MS, Ubbink JB, Sillanaukee P, et al. Effect of consumption of red wine, spirits, and beer on serum homocysteine. Lancet. 2000;355(9214):1522.
  • Burger M, Mensink G, Brönstrup A, et al. Alcohol consumption and its relation to cardiovascular risk factors in Germany. Eur J Clin Nutr. 2004;58(4):605‑614.
  • Barak AJ, Beckenhauer HC, Hidiroglou N, et al. The relationship of ethanol feeding to the methyl folate trap. Alcohol. 1993;10(6):495‑497.
  • Hidiroglou N, Camilo ME, Beckenhauer HC, et al. Effect of chronic alcohol ingestion on hepatic folate distribution in the rat. Biochem Pharmacol. 1994;47(9):1561‑1566.
  • Shaw S, Jayatilleke E, Herbert V, Colman N. Cleavage of folates during ethanol metabolism. Role of acetaldehyde/xanthine oxidase‑generated superoxide. Biochem J. 1989;257(1):277‑280.
  • Kenyon SH, Nicolaou A, Gibbons WA. The effect of ethanol and its metabolites upon methionine synthase activity in vitro. Alcohol. 1998;15(4):305‑309.
  • Finkelstein JD, Cello JP, Kyle WE. Ethanol‑induced changes in methionine metabolism in rat liver. Biochem Biophys Res Commun. 1974;61(2):525‑531.
  • Halsted CH, Villanueva J, Chandler CJ, et al. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology. 1996;23(3):497‑505.
  • Lumeng L, Ryan MP, Li TK. Validation of the diagnostic value of plasma pyridoxal 5’‑phosphate measurements in vitamin B6 nutrition of the rat. J Nutr. 1978;108(4):545‑553.
  • Danishpajooh IO, Gudi T, Chen Y, et al. Nitric oxide inhibits methionine synthase activity in vivo and disrupts carbon flow through the folate pathway. J Biol Chem. 2001;276(29):27296‑27303.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.