11,173
Views
27
CrossRef citations to date
0
Altmetric
Articles

Beta-thalassemia: renal complications and mechanisms: a narrative review

ORCID Icon, , , , , , , & show all

References

  • Yesilipek MA. Stem cell transplantation in hemoglobinopathies. Hemoglobin. 2007;31:251–256. doi: 10.1080/03630260701297196
  • Rivella S. Beta-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100:418–430. doi: 10.3324/haematol.2014.114827
  • Shinar E, Rachmilewitz EA. Oxidative denaturation of red blood cells in thalassemia. Semin Hematol. 1990;27:70–82.
  • Yuan J, Kannan R, Shinar E, et al. Isolation, characterization, and immunoprecipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes. Blood. 1992;79:3007–3013.
  • Origa R. Beta-thalassemia. Genet Med. 2017;19:609–619. doi: 10.1038/gim.2016.173
  • DeLoughery TG. Microcytic anemia. N Engl J Med. 2014;371:2537. doi: 10.1056/NEJMra1215361
  • Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115:4331–4336. doi: 10.1182/blood-2010-01-251348
  • Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86:480–487. doi: 10.2471/BLT.06.036673
  • Ginzburg Y, Rivella S. Beta-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood. 2011;118:4321–4330. doi: 10.1182/blood-2011-03-283614
  • Quinn CT, Johnson VL, Kim HY, et al. Thalassemia clinical research N. renal dysfunction in patients with thalassaemia. Br J Haematol. 2011;153:111–117. doi: 10.1111/j.1365-2141.2010.08477.x
  • Yaghobi M, Miri-Moghaddam E, Majid N, et al. Complications of transfusion-dependent beta-thalassemia patients in Sistan and Baluchistan, South-East of Iran. Int J Hematol Oncol Stem Cell Res. 2017;11:268–272.
  • Mokhtar GM, Gadallah M, El Sherif NH, et al. Morbidities and mortality in transfusion dependent beta-thalassemia patients (single-center experience). Pediatr Hematol Oncol. 2013;30:93–103. doi: 10.3109/08880018.2012.752054
  • Ong-ajyooth L, Malasit P, Ong-ajyooth S, et al. Renal function in adult beta-thalassemia/Hb E disease. Nephron. 1998;78:156–161. doi: 10.1159/000044904
  • Ahmadzadeh A, Jalali A, Assar S, et al. Renal tubular dysfunction in pediatric patients with beta-thalassemia major. Saudi J Kidney Dis Transpl. 2011;22:497–500.
  • Sadeghi-Bojd S, Hashemi M, Karimi M. Renal tubular function in patients with beta-thalassaemia major in Zahedan, Southeast Iran. Singapore Med J. 2008;49:410–412.
  • Sen V, Ece A, Uluca U, et al. Urinary early kidney injury molecules in children with beta-thalassemia major. Ren Fail. 2015;37:607–613. doi: 10.3109/0886022X.2015.1007871
  • Patsaoura A, Tatsi E, Margeli A, et al. Plasma neutrophil gelatinase-associated lipocalin levels are markedly increased in patients with non-transfusion-dependent thalassemia: Lack of association with markers of erythropoiesis, iron metabolism and renal function. Clin Biochem. 2014;47:1060–1064. doi: 10.1016/j.clinbiochem.2014.03.017
  • Roudkenar MH, Halabian R, Oodi A, et al. Upregulation of neutrophil gelatinase-associated lipocalin, NGAL/Lcn2, in betathalassemia patients. Arch Med Res. 2008;39:402–407. doi: 10.1016/j.arcmed.2007.12.002
  • Aldudak B, Karabay Bayazit A, Noyan A, et al. Renal function in pediatric patients with beta-thalassemia major. Pediatr Nephrol. 2000;15:109–112. doi: 10.1007/s004670000434
  • Mohkam M, Shamsian BS, Gharib A, et al. Early markers of renal dysfunction in patients with beta-thalassemia major. Pediatr Nephrol. 2008;23:971–976. doi: 10.1007/s00467-008-0753-x
  • Smolkin V, Halevy R, Levin C, et al. Renal function in children with beta-thalassemia major and thalassemia intermedia. Pediatr Nephrol. 2008;23:1847–1851. doi: 10.1007/s00467-008-0897-8
  • Sumboonnanonda A, Malasit P, Tanphaichitr VS, et al. Renal tubular function in beta-thalassemia. Pediatr Nephrol. 1998;12:280–283. doi: 10.1007/s004670050453
  • Zhou XJ, Laszik Z, Wang XQ, et al. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Invest. 2000;80:1905–1914. doi: 10.1038/labinvest.3780200
  • Michelakakis H, Dimitriou E, Georgakis H, et al. Iron overload and urinary lysosomal enzyme levels in beta-thalassaemia major. Eur J Pediatr. 1997;156:602–604. doi: 10.1007/s004310050673
  • Koliakos G, Papachristou F, Koussi A, et al. Urine biochemical markers of early renal dysfunction are associated with iron overload in beta-thalassaemia. Clin Lab Haematol. 2003;25:105–109. doi: 10.1046/j.1365-2257.2003.00507.x
  • Hashemieh M, Azarkeivan A, Akhlaghpoor S, et al. T2-star (T2*) magnetic resonance imaging for assessment of kidney iron overload in thalassemic patients. Arch Iran Med. 2012;15:91–94.
  • Nangaku M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol. 2006;17:17–25. doi: 10.1681/ASN.2005070757
  • Nagababu E, Gulyani S, Earley CJ, et al. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res. 2008;42:824–829. doi: 10.1080/10715760802459879
  • Manotham K, Tanaka T, Matsumoto M, et al. Transdifferentiation of cultured tubular cells induced by hypoxia. Kidney Int. 2004;65:871–880. doi: 10.1111/j.1523-1755.2004.00461.x
  • Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 2000;58:2351–2366. doi: 10.1046/j.1523-1755.2000.00419.x
  • Norman JT, Orphanides C, Garcia P, et al. Hypoxia-induced changes in extracellular matrix metabolism in renal cells. Exp Nephrol. 1999;7:463–469. doi: 10.1159/000020625
  • Tantawy AA, El Bablawy N, Adly AA, et al. Early predictors of renal dysfunction in Egyptian patients with beta-thalassemia major and intermedia. Mediterr J Hematol Infect Dis. 2014;6:e2014057. doi: 10.4084/mjhid.2014.057
  • Sumboonnanonda A, Sanpakit K, Piyaphanee N. Renal tubule function in beta-thalassemia after hematopoietic stem cell transplantation. Pediatr Nephrol. 2009;24:183–187. doi: 10.1007/s00467-008-0949-0
  • Davis LE, Hohimer AR. Hemodynamics and organ blood flow in fetal sheep subjected to chronic anemia. Am J Physiol. 1991;261:R1542–8.
  • Lafferty HM, Anderson S, Brenner BM. Anemia: a potent modulator of renal hemodynamics in models of progressive renal disease. Am J Kidney Dis. 1991;17:2–7.
  • Hostetter TH. Hyperfiltration and glomerulosclerosis. Semin Nephrol. 2003;23:194–199. doi: 10.1053/snep.2003.50017
  • Alfrey AC. Role of iron and oxygen radicals in the progression of chronic renal failure. Am J Kidney Dis. 1994;23:183–187. doi: 10.1016/S0272-6386(12)80969-3
  • Musallam KM, Taher AT. Mechanisms of renal disease in beta-thalassemia. J Am Soc Nephrol. 2012;23:1299–1302. doi: 10.1681/ASN.2011111070
  • Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987;34:571–590. doi: 10.1016/S0031-3955(16)36251-4
  • Levey AS, Coresh J, Greene T, et al. Chronic kidney disease epidemiology C. using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–254. doi: 10.7326/0003-4819-145-4-200608150-00004
  • Milo G, Feige Gross Nevo R, Pazgal I, et al. GFR in patients with beta-thalassemia major. Clin J Am Soc Nephrol. 2015;10:1350–1356. doi: 10.2215/CJN.12181214
  • Economou M, Printza N, Teli A, et al. Renal dysfunction in patients with beta-thalassemia major receiving iron chelation therapy either with deferoxamine and deferiprone or with deferasirox. Acta Haematol. 2010;123: 148–152. doi: 10.1159/000287238
  • Hamed EA, ElMelegy NT. Renal functions in pediatric patients with beta-thalassemia major: relation to chelation therapy: original prospective study. Ital J Pediatr. 2010;36:39. doi: 10.1186/1824-7288-36-39
  • Al-Khabori M, Bhandari S, Al-Rasadi K, et al. Correlation of iron overload and glomerular filtration rate estimated by cystatin C in patients with thalassemia major. Haemoglobin. 2014;38:365–368. doi: 10.3109/03630269.2014.944314
  • Piga A, Fracchia S, Lai ME, et al. Deferasirox effect on renal haemodynamic parameters in patients with transfusion-dependent beta thalassaemia. Br J Haematol. 2015;168:882–890. doi: 10.1111/bjh.13217
  • Lai ME, Spiga A, Vacquer S. Renal function in patients with β-thalassaemia major: a long-term follow-up study. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2012;27(9):3547–3598. doi: 10.1093/ndt/gfs169
  • Deveci B, Kurtoglu A, Kurtoglu E, et al. Documentation of renal glomerular and tubular impairment and glomerular hyperfiltration in multitransfused patients with beta thalassemia. Ann Hematol. 2016;95:375–381. doi: 10.1007/s00277-015-2561-2
  • Shapira Y, Glick B, Finsterbush A, et al. Myopathological findings in thalassemia major. Eur Neurol. 1990;30: 324–327. doi: 10.1159/000117365
  • Logothetis J, Constantoulakis M, Economidou J, et al. Thalassemia major (homozygous beta-thalassemia). A survey of 138 cases with emphasis on neurologic and muscular aspects. Neurology. 1972;22:294–304. doi: 10.1212/WNL.22.3.294
  • Levey AS. Measurement of renal function in chronic renal disease. Kidney Int. 1990;38:167–184. doi: 10.1038/ki.1990.182
  • Shemesh O, Golbetz H, Kriss JP, et al. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28:830–838. doi: 10.1038/ki.1985.205
  • Hankins DA, Babb AL, Uvelli DA, et al. Creatinine degradation I: the kinetics of creatinine removal in patients with chronic kidney disease. Int J Artif Organs. 1981;4:35–39. doi: 10.1177/039139888100400209
  • Moore AE, Park-Holohan SJ, Blake GM, et al. Conventional measurements of GFR using 51Cr-EDTA overestimate true renal clearance by 10 percent. Eur J Nucl Med Mol Imaging. 2003;30:4–8. doi: 10.1007/s00259-002-1007-y
  • Filler G, Huang SH, Yasin A. The usefulness of cystatin C and related formulae in pediatrics. Clin Chem Lab Med. 2012;50:2081–2091. doi: 10.1515/cclm-2012-0257
  • Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40:221–226. doi: 10.1053/ajkd.2002.34487
  • Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51:395–406. doi: 10.1053/j.ajkd.2007.11.018
  • Rigalleau V, Beauvieux MC, Lasseur C, et al. The combination of cystatin C and serum creatinine improves the monitoring of kidney function in patients with diabetes and chronic kidney disease. Clin Chem. 2007;53:1988–1989. doi: 10.1373/clinchem.2007.092171
  • Skorecki K, Chertow GM, Marsden PA, et al. Brenner & Rector's the kidney. 10th ed. Elsevier; 2015.
  • Ali D, Mehran K, Moghaddam AG. Comparative evaluation of renal findings in beta-thalassemia major and intermedia. Saudi J Kidney Dis Transpl. 2008;19:206–209.
  • Fallahzadeh MH, Fallahzadeh MK, Shahriari M, et al. Hematuria in patients with beta-thalassemia major. Iran J Kidney Dis. 2010;4:133–136.
  • Wong P, Milat F, Fuller PJ, et al. Urolithiasis is prevalent and associated with reduced bone mineral density in betathalassaemia major. Intern Med J. 2017;47:1064–1067. doi: 10.1111/imj.13533
  • Wong P, Fuller PJ, Gillespie MT, et al. Thalassemia bone disease: the association between nephrolithiasis, bone mineral density and fractures. Osteoporos Int. 2013;24:1965–1971. doi: 10.1007/s00198-012-2260-y
  • Heaney RP. Calcium supplementation and incident kidney stone risk: a systematic review. J Am Coll Nutr. 2008;27:519–527. doi: 10.1080/07315724.2008.10719734
  • Malihi Z, Wu Z, Stewart AW, et al. Hypercalcemia, hypercalciuria, and kidney stones in long-term studies of vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr. 2016;104:1039–1051. doi: 10.3945/ajcn.116.134981
  • Ricchi P, Ammirabile M, Costantini S, et al. Splenectomy is a risk factor for developing hyperuricemia and nephrolithiasis in patients with thalassemia intermedia: a retrospective study. Blood Cells Mol Dis. 2012;49:133–135. doi: 10.1016/j.bcmd.2012.05.012
  • Papassotiriou I, Margeli A, Hantzi E, et al. Cystatin C levels in patients with beta-thalassemia during deferasirox treatment. Blood Cells Mol Dis. 2010;44:152–155. doi: 10.1016/j.bcmd.2010.01.001
  • Ponticelli C, Musallam KM, Cianciulli P, et al. Renal complications in transfusiondependent beta thalassaemia. Blood Rev. 2010;24:239–244. doi: 10.1016/j.blre.2010.08.004
  • Hoffbrand AV, Faris AL-R, Davis B, et al. Long-term trial of deferiprone in 51 transfusion-dependent iron overloaded patients. Blood. 1998;91:295–300.
  • ElAlfy MS, Sari TT, Lee CL, et al. The safety, tolerability, and efficacy of a liquid formulation of deferiprone in young children with transfusional iron overload. J Pediatr Hematol Oncol. 2010;32:601–605. doi: 10.1097/MPH.0b013e3181ec0f13
  • Bragadesh T, Bhandari S. The use of deferiprone, iron overload in a renal transplant patient. Q J Med. 2014;107:465–466. doi: 10.1093/qjmed/hct254
  • Hoffbrand AV, Cohen A, Hershko C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003;102:17–24. doi: 10.1182/blood-2002-06-1867
  • De Domenico I, Ward DM, Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood. 2009;114:4546–4551. doi: 10.1182/blood-2009-05-224188
  • Bhandari S, Galanello R. Renal aspects of thalassaemia a changing paradigm. Eur J Haematol. 2012;89:187–197. doi: 10.1111/j.1600-0609.2012.01819.x
  • Chuang GT, Tsai IJ, Tsau YK, et al. Transfusion-dependent thalassaemic patients with renal Fanconi syndrome due to deferasirox use. Nephrology. 2015;20:931–935. doi: 10.1111/nep.12523
  • Dee CM, Cheuk DK, Ha SY, et al. Incidence of deferasirox-associated renal tubular dysfunction in children and young adults with beta-thalassaemia. Br J Haematol. 2014;167:434–436. doi: 10.1111/bjh.13002
  • Dell'Orto VG, Bianchetti MG, Brazzola P. Hyperchloraemic metabolic acidosis induced by the iron chelator deferasirox: a case report and review of the literature. J Clin Pharm Ther. 2013;38:526–527. doi: 10.1111/jcpt.12095
  • Even-Or E, Becker-Cohen R, Miskin H. Deferasirox treatment may be associated with reversible renal Fanconi syndrome. Am J Hematol. 2010;85:132–134.
  • Grange S, Bertrand DM, Guerrot D, et al. Acute renal failure and Fanconi syndrome due to deferasirox. Nephrol Dial Transplant. 2010;25:2376–2378. doi: 10.1093/ndt/gfq224
  • Murphy N, Elramah M, Vats H, et al. A case report of deferasirox-induced kidney injury and Fanconi syndrome. WMJ. 2013;112:177–180.
  • Papadopoulos N, Vasiliki A, Aloizos G, et al. Hyperchloremic metabolic acidosis due to deferasirox in a patient with beta thalassemia major. Ann Pharmacother. 2010;44:219–221. doi: 10.1345/aph.1M440
  • Rafat C, Fakhouri F, Ribeil JA, et al. Fanconi syndrome due to deferasirox. Am J Kidney Dis. 2009;54:931–934. doi: 10.1053/j.ajkd.2009.03.013
  • Rheault MN, Bechtel H, Neglia JP, et al. Reversible Fanconi syndrome in a pediatric patient on deferasirox. Pediatr Blood Cancer. 2011;56:674–676. doi: 10.1002/pbc.22711
  • Wei HY, Yang CP, Cheng CH, et al. Fanconi syndrome in a patient with beta-thalassemia major after using deferasirox for 27 months. Transfusion. 2011;51:949–954. doi: 10.1111/j.1537-2995.2010.02939.x
  • Yacobovich J, Stark P, Barzilai-Birenbaum S, et al. Acquired proximal renal tubular dysfunction in beta-thalassemia patients treated with deferasirox. J Pediatr Hematol Oncol. 2010;32:564–567. doi: 10.1097/MPH.0b013e3181ec0c38
  • Cappellini MD, Cohen A, Piga A, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood. 2006;107: 3455–3462. doi: 10.1182/blood-2005-08-3430
  • Cappellini MD, Bejaoui M, Agaoglu L, et al. Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years' follow-up. Blood. 2011;118:884–893. doi: 10.1182/blood-2010-11-316646
  • Papneja K, Bhatt MD, Kirby-Allen M, et al. Fanconi syndrome secondary to deferasirox in Diamond-Blackfan anemia: case Series and Recommendations for early diagnosis. Pediatr Blood Cancer. 2016;63:1480–1483. doi: 10.1002/pbc.25995
  • Tunc B, Tavil B, Karakurt N, et al. Deferasirox therapy in children with Fanconi aplastic anemia. J Pediatr Hematol Oncol. 2012;34:247–251. doi: 10.1097/MPH.0b013e318249a4be
  • Shah L, Powell JL, Zaritsky JJ. A case of Fanconi syndrome due to a deferasirox overdose and a trial of plasmapheresis. J Clin Pharm Ther. 2017;42:634–637. doi: 10.1111/jcpt.12553
  • Wong P, Polkinghorne K, Kerr PG, et al. Deferasirox at therapeutic doses is associated with dose-dependent hypercalciuria. Bone. 2016;85:55–58. doi: 10.1016/j.bone.2016.01.011
  • Efthimia V, Neokleous N, Agapidou A, et al. Nephrolithiasis in beta thalassemia major patients treated with deferasirox: an advent or an adverse event? A single Greek center experience. Ann Hematol. 2013;92:263–265. doi: 10.1007/s00277-012-1558-3
  • Al-Khabori M, Bhandari S, Al-Huneini M, et al. Side effects of deferasirox iron chelation in patients with beta thalassemia major or intermedia. Oman Med J. 2013;2:121–124. doi: 10.5001/omj.2013.31
  • Beydoun HG, Saliba AN, Taher AT. Deferasirox in thalassemia patients with end-stage renal disease. Am J Hematol. 2016;91:E456–E457. doi: 10.1002/ajh.24457
  • Karimi M, Avazpour A, Haghpanah S, et al. Evaluation of proteinuria in beta- thalassemia major patients With and without diabetes mellitus Taking deferasirox. J Pediatr Hematol Oncol. 2017;39:e11–ee4. doi: 10.1097/MPH.0000000000000658
  • Brittenham GM. Iron-chelating therapy for transfusional iron overload. N Engl J Med. 2011;364:146–156. doi: 10.1056/NEJMct1004810
  • Prasannan L, Flynn JT, Levine JE. Acute renal failure following deferoxamine overdose. Pediatr Nephrol. 2003;18:283–285.
  • Aydinok Y, Coker C, Kavakli K, et al. Urinary zinc excretion and zinc status of patients with beta-thalassemia major. Biol Trace Elem Res. 1999;70:165–172. doi: 10.1007/BF02783857
  • Adamkiewicz TV, Berkovitch M, Krishnan C, et al. Infection due to Yersinia enterocolitica in a series of patients with beta-thalassemia: incidence and predisposing factors. Clin Infect Dis. 1998;27:1362–1366. doi: 10.1086/515025
  • Chan GC, Chan S, Ho PL, et al. Effects of chelators (deferoxamine, deferiprone and deferasirox) on the growth of Klebsiella pneumoniae and Aeromonas hydrophila isolated from transfusiondependent thalassemia patients. Hemoglobin. 2009;33:352–360. doi: 10.3109/03630260903211888
  • Boelaert JR, de Locht M, Van Cutsem J, et al. Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. In vitro and in vivo animal studies. J Clin Invest. 1993;91:1979–1986. doi: 10.1172/JCI116419
  • Vichinsky E. Clinical application of deferasirox: practical patient management. Am J Hematol. 2008;83:398–402. doi: 10.1002/ajh.21119