2,852
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of transcriptome profiles of nucleated red blood cells in cord blood between preterm and full-term neonates

ORCID Icon, , , , , , , ORCID Icon, & ORCID Icon show all

References

  • Park SH, Lee CM, Dever DP, et al. Highly efficient editing of the β-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res 2019;47:7955–7972.
  • Orkin SH, Bauer DE. Emerging genetic therapy for Sickle cell disease. Annu Rev Med. 2019;70:257–271. doi:10.1146/annurev-med-041817-125507.
  • Lohani N, Bhargava N, Munshi A, et al. Pharmacological and molecular approaches for the treatment of beta-hemoglobin disorders. J Cell Physiol. 2018;233:4563–4577. doi:10.1002/jcp.26292.
  • Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol. 2018;180:630–643. doi:10.1111/bjh.15038.
  • Liu N, Hargreaves VV, Zhu Q, et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell. 2018;173:430–442. e417. doi: 10.1016/j.cell.2018.03.016.
  • Yang Y, Xu Z, He C, et al. Structural insights into the recognition of gamma-globin gene promoter by BCL11A. Cell Res. 2019;29:960–963. doi:10.1038/s41422-019-0221-0.
  • Huang P, Keller CA, Giardine B, et al. Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element. Genes Dev. 2017;31:1704–1713. doi:10.1101/gad.303461.117.
  • Xu J, Shao Z, Glass K, et al. Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis. Dev Cell. 2012;23:796–811. doi:10.1016/j.devcel.2012.09.003.
  • Morrison TA, Wilcox I, Luo HY, et al. A long noncoding RNA from the HBS1L-MYB intergenic region on chr6q23 regulates human fetal hemoglobin expression. Blood Cells Mol Dis. 2018;69:1–9. doi:10.1016/j.bcmd.2017.11.003.
  • Ivaldi MS, Diaz LF, Chakalova L, et al. Fetal gamma-globin genes are regulated by the BGLT3 long noncoding RNA locus. Blood. 2018;132:1963–1973. doi:10.1182/blood-2018-07-862003.
  • Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009;10:R25.
  • John B, Enright AJ, Aravin A, et al. Human MicroRNA targets. PLoS Biol 2004;2:e363.
  • Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005.
  • Tarazona S, García-Alcalde F, Dopazo J, et al. Differential expression in RNA-seq: a matter of depth. Genome Res 2011;21:2213–2223.
  • Kim D, Langmead B, Salzberg SL. Hisat: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–360.
  • Pertea M, Pertea GM, Antonescu CM, et al. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 2015;33:290–295.
  • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511–515.
  • Wang L, Feng Z, Wang X, et al. Degseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics (Oxford, England). 2010;26:136–138. doi:10.1093/bioinformatics/btp612.
  • Ramírez F, Dündar F, Diehl S, et al. Deeptools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014;42:W187–W191. doi:10.1093/nar/gku365.
  • Yu G, Wang LG, Han Y, et al. Clusterprofiler: an R package for comparing biological themes among gene clusters. Omics: A Journal of Integrative Biology. 2012;16:284–287.
  • Lessard S, Beaudoin M, Orkin SH, et al. 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Hum Mol Genet. 2018;27:1411–1420. doi:10.1093/hmg/ddy051.
  • Zhang HM, Chen H, Liu W, et al. Animaltfdb: a comprehensive animal transcription factor database. Nucleic Acids Res. 2012;40:D144–D149. doi:10.1093/nar/gkr965.
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–d612. doi:10.1093/nar/gkaa1074.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–2504.
  • Li JH, Liu S, Zhou H, et al. Starbase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–D97. doi:10.1093/nar/gkt1248.
  • Chen Y, Wang X. Mirdb: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–d131. doi:10.1093/nar/gkz757.
  • Lee YT, de Vasconcellos JF, Yuan J, et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood. 2013;122:1034–1041.
  • Sher F, Hossain M, Seruggia D, et al. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat Genet. 2019;51:1149–1159. doi:10.1038/s41588-019-0453-4.
  • Han WP, Huang L, Li YY, et al. Reference intervals for HbA2 and HbF and cut-off value of HbA2 for beta-thalassemia carrier screening in a Guizhou population of reproductive age. Clin Biochem. 2019;65:24–28. doi:10.1016/j.clinbiochem.2018.11.007.
  • Jung M, Ramanagoudr-Bhojappa R, van Twest S, et al. Association of clinical severity with FANCB variant type in Fanconi anemia. Blood. 2020;135:1588–1602.
  • Sousa R, Goncalves C, Guerra IC, et al. Increased red cell distribution width in Fanconi anemia: a novel marker of stress erythropoiesis. Orphanet J Rare Dis. 2016;11:102), doi:10.1186/s13023-016-0485-0.
  • Sankaran VG, Menne TF, Šćepanović D, et al. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A. 2011;108:1519–1524. doi:10.1073/pnas.1018384108.
  • Bianchi N, Finotti A, Ferracin M, et al. Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells. PLoS One. 2015;10:e0121567.
  • Azzouzi I, Moest H, Winkler J, et al. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis. PLoS One. 2011;6:e22838), doi:10.1371/journal.pone.0022838.
  • Peng F, Li TT, Wang KL, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death Dis. 2017;8:e2569), doi:10.1038/cddis.2016.438.
  • Gabory A, Jammes H, Dandolo L. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays. 2010;32:473–480.
  • Zhou J, Xu J, Zhang L, et al. Combined single-cell profiling of lncRNAs and functional screening reveals that H19 Is pivotal for embryonic hematopoietic stem cell development. Cell Stem Cell. 2019;24:285–298. e285. doi: 10.1016/j.stem.2018.11.023.
  • Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature. 2013;500:345–349.
  • Balzeau J, Menezes MR, Cao S, et al. The LIN28/let-7 pathway in cancer. Front Genet. 2017;8:31), doi:10.3389/fgene.2017.00031.
  • Basak A, Munschauer M, Lareau CA, et al. Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nat Genet. 2020;52:138–145. doi:10.1038/s41588-019-0568-7.
  • de Vasconcellos JF, Lee YT, Byrnes C, et al. Hmga2 moderately increases fetal hemoglobin expression in human adult erythroblasts. PLoS One. 2016;11:e0166928.
  • Ran D, Shia WJ, Lo MC, et al. Runx1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood. 2013;121:2882–2890.