3,586
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Noninvasive prenatal testing of beta-thalassemia for common Pakistani mutations: a comparative study using cell-free fetal DNA from maternal plasma and chorionic villus sampling

ORCID Icon, , , , , , , & show all

References

  • Ahmed S. Prenatal diagnosis of beta-thalassemia: 12 years’ experience at a single laboratory in Pakistan. Prenat Diagn. 2007;27(13):1224–1227.
  • Zaheer HA, Waheed U, Abdella YE, et al. Thalassemia in Pakistan: a forward-looking solution to a serious health issue. Glob J Transfus Med. 2020;5:108–110.
  • Zafari M, Kosaryan M, Gill P, et al. Non-invasive prenatal diagnosis of β-thalassemia by detection of the cell-free fetal DNA in maternal circulation: a systematic review and meta-analysis. Ann Hematol. 2016;95(8):1341–1350.
  • Swanson A, Sehnert AJ, Bhatt S. Non-invasive prenatal testing: technologies, clinical assays and implementation strategies for women's healthcare practitioners. Curr Genet Med Rep. 2013;1(2):113–121.
  • Papageorgiou EA, Patsalis PC. Non-invasive prenatal diagnosis of aneuploidies: new technologies and clinical applications. Genome Med. 2012;4(5):46.
  • Ahmed S, Saleem M, Rashid Y. The first prenatal diagnosis of thalassaemia in Pakistan: a case report. Pak J Pathol. 1994;5:69–71.
  • Pan M, Chen P, Lu J, et al. The fragmentation patterns of maternal plasma cell-free DNA and its applications in non-invasive prenatal testing. Prenat Diagn. 2020;40(8):911–917.
  • White HE, Dent CL, Hall VJ, et al. Evaluation of a novel assay for detection of the fetal marker RASSF1A: facilitating improved diagnostic reliability of noninvasive prenatal diagnosis. PLoS One. 2012;7(9):e45073.
  • Chan KC, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem. 2006;52(12):2211–2218.
  • Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487.
  • Mahmoud ST, Aboalwafa H, Ali E, et al. Non-invasive prenatal diagnosis of β-thalassemia by detection of the cell-free fetal DNA in maternal circulation. Sohag Med J. 2019;23(3):156–167.
  • Chen C, Li R, Sun J, et al. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome Med. 2021;13(1):18.
  • Chiu RW, Lau TK, Leung TN, et al. Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet. 2002;360(9338):998–1000.
  • Lo YM, Tein MSC, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–775.
  • Hu P, Liang D, Chen Y, et al. An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J Transl Med. 2019;17(1):124.
  • Akbariqomi M, Heidari R, Gargari SS, et al. Evaluation and statistical optimization of a method for methylated cell-free fetal DNA extraction from maternal plasma. J Assist Reprod Genet. 2019;36(5):1029–1038.
  • Fan HC, Blumenfeld YJ, Chitkara U, et al. Analysis of the size distributions of fetal and maternal cell-free DNA by paired-end sequencing. Clin Chem. 2010;56(8):1279–1286.
  • Li Y, Di Naro E, Vitucci A, et al. Size fractionation of cell-free DNA in maternal plasma improves the detection of a paternally inherited beta-thalassemia point mutation by MALDI-TOF mass spectrometry. Fetal Diagn Ther. 2009;25(2):246–249.
  • Galbiati S, Monguzzi A, Damin F, et al. COLD-PCR and microarray: two independent highly sensitive approaches allowing the identification of fetal paternally inherited mutations in maternal plasma. J Med Genet. 2016;53(7):481–487.
  • Hudecova I, Chiu RW. Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol. 2017;39:63–73.
  • Yang X, Ye Y, Fan D, et al. Non-invasive prenatal diagnosis of thalassemia through multiplex PCR, target capture and next-generation sequencing. Mol Med Rep. 2020;22(2):1547–1557.
  • Pedini P, Graiet H, Laget L, et al. Qualitative and quantitative comparison of cell-free DNA and cell-free fetal DNA isolation by four (semi-)automated extraction methods: impact in two clinical applications: chimerism quantification and noninvasive prenatal diagnosis. J Transl Med. 2021;19(1):15.
  • Breveglieri G, Travan A, D’Aversa E, et al. Postnatal and non-invasive prenatal detection of β-thalassemia mutations based on TaqMan genotyping assays. PLoS One. 2017;12(2):e0172756.
  • Debrand E, Lykoudi A, Bradshaw E, et al. A non-invasive droplet digital PCR (ddPCR) assay to detect paternal CFTR mutations in the cell-free fetal DNA (cffDNA) of three pregnancies at risk of cystic fibrosis via compound heterozygosity. PLoS One. 2015;10(11):e0142729.
  • Ramezanzadeh M, et al. Detection of paternally inherited fetal point mutations for β-thalassemia in maternal plasma using simple fetal DNA enrichment protocol with or without whole genome amplification: an accuracy assessment. J Matern Fetal Neonatal Med. 2016;29(16):2645–2649.
  • Khordadpoor-Deilamani F, Akbari MT. The use of cell-free fetal DNA in maternal plasma for noninvasive prenatal linkage analysis in beta globin gene cluster. Bratisl Lek Listy. 2015;116(11):662–665.
  • Chang MY, Ahn S, Kim MY, et al. One-step noninvasive prenatal testing (NIPT) for autosomal recessive homozygous point mutations using digital PCR. Sci Rep. 2018;8(1):2877.
  • Perlado S, Bustamante-Aragonés A, Donas M, et al. Fetal genotyping in maternal blood by digital PCR: towards NIPD of monogenic disorders independently of parental origin. PLoS One. 2016;11(4):e0153258.