2,087
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Prognostic biomarker replication factor C subunit 5 and its correlation with immune infiltrates in acute myeloid leukemia

, , , &

References

  • Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2019;56:84–89. doi:10.1053/j.seminhematol.2018.08.001.
  • Gill SI. How close are we to CAR T-cell therapy for AML? Best Pract Res Clin Haematol. 2019;32:101104, doi:10.1016/j.beha.2019.101104.
  • Alahmari B, Alzahrani M, Al Shehry N, et al. Management approach to acute myeloid leukemia leveraging the available resources in view of the latest evidence: consensus of the Saudi society of Blood and marrow transplantation. JCO Glob Oncol. 2021;7:1220–1232. doi:10.1200/GO.20.00660.
  • Chen XX, Li ZP, Zhu JH, et al. Systematic analysis of autophagy-related signature uncovers prognostic predictor for acute myeloid leukemia. DNA Cell Biol. 2020;39:1595–1605. doi:10.1089/dna.2020.5667.
  • Prada-Arismendy J, Arroyave JC, Rothlisberger S. Molecular biomarkers in acute myeloid leukemia. Blood Rev. 2017;31:63–76. doi:10.1016/j.blre.2016.08.005.
  • Mrozek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev. 2004;18:115–136. doi:10.1016/S0268-960X(03)00040-7.
  • Estey EH. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am J Hematol. 2018;93:1267–1291. doi:10.1002/ajh.25214.
  • Kantarjian H, Kadia T, DiNardo C, et al. Acute myeloid leukemia: current progress and future directions. Blood Cancer J. 2021;11:41, doi:10.1038/s41408-021-00425-3.
  • Bowman GD, O'Donnell M, Kuriyan J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature. 2004;429:724–730. doi:10.1038/nature02585.
  • Chen M, Pan ZQ, Hurwitz J. Studies of the cloned 37-kDa subunit of activator 1 (replication factor C) of HeLa cells. Proc Natl Acad Sci U S A. 1992;89:5211–5215. doi:10.1073/pnas.89.12.5211.
  • Gray FC, MacNeill SA. The Schizosaccharomyces pombe rfc3+ gene encodes a homologue of the human hRFC36 and Saccharomyces cerevisiae Rfc3 subunits of replication factor C. Curr Genet. 2000;37:159–167. doi:10.1007/s002940050514.
  • Furukawa T, Ishibashi T, Kimura S, et al. Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza sativa L.), and their relation to development. Plant Mol Biol. 2003;53:15–25. doi:10.1023/B:PLAN.0000009258.04711.62.
  • Cullmann G, Fien K, Kobayashi R, et al. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Mol Cell Biol. 1995;15:4661–4671. doi:10.1128/MCB.15.9.4661.
  • O'Donnell M, Onrust R, Dean FB, et al. Homology in accessory proteins of replicative polymerases–E. coli to humans. Nucleic Acids Res. 1993;21:1–3. doi:10.1093/nar/21.1.1.
  • Green CM, Erdjument-Bromage H, Tempst P, et al. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol. 2000;10:39–42. doi:10.1016/s0960-9822(99)00263-8.
  • Mossi R, Keller RC, Ferrari E, et al. DNA polymerase switching: II. Replication factor C abrogates primer synthesis by DNA polymerase alpha at a critical length. J Mol Biol. 2000;295:803–814. doi:10.1006/jmbi.1999.3395.
  • Pascucci B, Stucki M, Jonsson ZO, et al. Long patch base excision repair with purified human proteins. DNA ligase I as patch size mediator for DNA polymerases delta and epsilon. J Biol Chem. 1999;274:33696–33702. doi:10.1074/jbc.274.47.33696.
  • Liu SM, Chen W, Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep. 2014;4:5577, doi:10.1038/srep05577.
  • Ryu DS, Baek GO, Kim EY, et al. Effects of polysaccharides derived from orostachys japonicus on induction of cell cycle arrest and apoptotic cell death in human colon cancer cells. BMB Rep. 2010;43:750–755. doi:10.5483/BMBRep.2010.43.11.750.
  • Barfeld SJ, East P, Zuber V, et al. Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med Genomics. 2014;7:513, doi:10.1186/s12920-014-0074-9.
  • Liu D, Zhang XX, Xi BX, et al. Sine oculis homeobox homolog 1 promotes DNA replication and cell proliferation in cervical cancer. Int J Oncol. 2014;45:1232–1240. doi:10.3892/ijo.2014.2510.
  • Varghese S, Xu H, Bartlett D, et al. Isolated hepatic perfusion with high-dose melphalan results in immediate alterations in tumor gene expression in patients with metastatic ocular melanoma. Ann Surg Oncol. 2010;17:1870–1877. doi:10.1245/s10434-010-0998-z.
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–457. doi:10.1038/nmeth.3337.
  • Mou Y, Wu J, Zhang Y, et al. Low expression of ferritinophagy-related NCOA4 gene in relation to unfavorable outcome and defective immune cells infiltration in clear cell renal carcinoma. BMC Cancer. 2021;21:18, doi:10.1186/s12885-020-07726-z.
  • Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–1152. doi:10.1056/NEJMra1406184.
  • Lai C, Doucette K, Norsworthy K. Recent drug approvals for acute myeloid leukemia. J Hematol Oncol. 2019;12:100, doi:10.1186/s13045-019-0774-x.
  • Martin GH, Roy N, Chakraborty S, et al. CD97 is a critical regulator of acute myeloid leukemia stem cell function. J Exp Med. 2019;216:2362–2377. doi:10.1084/jem.20190598.
  • DiNardo CD, Stein EM, Pigneux A, et al. Outcomes of patients with IDH1-mutant relapsed or refractory acute myeloid leukemia receiving ivosidenib who proceeded to hematopoietic stem cell transplant. Leukemia. 2021;35:3278–3281. doi:10.1038/s41375-021-01229-x.
  • Xuan L, Wang Y, Huang F, et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial. Lancet Oncol. 2020;21:1201–1212. doi:10.1016/S1470-2045(20)30455-1.
  • Zhong J, Wu H, Bu X, et al. Establishment of prognosis model in acute myeloid leukemia based on Hypoxia microenvironment, and exploration of Hypoxia-related mechanisms. Front Genet. 2021;12:727392, doi:10.3389/fgene.2021.727392.
  • Martinez I, Wang J, Hobson KF, et al. Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. Eur J Cancer. 2007;43:415–432. doi:10.1016/j.ejca.2006.09.001.
  • Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. doi:10.1016/j.immuni.2019.06.025.
  • Vitale I, Manic G, Coussens LM, et al. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 2019;30:36–50. doi:10.1016/j.cmet.2019.06.001.
  • Liu C, Zhou X, Long Q, et al. Small extracellular vesicles containing miR-30a-3p attenuate the migration and invasion of hepatocellular carcinoma by targeting SNAP23 gene. Oncogene. 2021;40:233–245. doi:10.1038/s41388-020-01521-7.
  • Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–555. doi:10.1016/s1471-4906(02)02302-5.
  • Schroder K, Sweet MJ, Hume DA. Signal integration between IFNgamma and TLR signalling pathways in macrophages. Immunobiology. 2006;211:511–524. doi:10.1016/j.imbio.2006.05.007.
  • Gu L, Tseng S, Horner RM, et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404:407–411. doi:10.1038/35006097.
  • Xu ZJ, Gu Y, Wang CZ, et al. The M2 macrophage marker CD206: a novel prognostic indicator for acute myeloid leukemia. Oncoimmunology. 2020;9:1683347, doi:10.1080/2162402X.2019.1683347.
  • Yang X, Feng W, Wang R, et al. Repolarizing heterogeneous leukemia-associated macrophages with more M1 characteristics eliminates their pro-leukemic effects. Oncoimmunology. 2018;7:e1412910, doi:10.1080/2162402X.2017.1412910.