1,129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Expression and clinical significance of RAG1 in myelodysplastic syndromes

, , , , , & show all

References

  • Yuan Long, Ying Le, Xupai Zhang, et, al. Expression and significance of MiR-486-5p in patients with myelodysplastic syndrome. Chinese Journal of Clinical Research. 2018;31(06):767–9+74.
  • Ying Le. Screening and identification of key candidate genes and pathways in myelodysplastic syndrome by bioinformatic analysis. PeerJ. 2019 Nov 29;7:e8162.
  • Yanqiu Xiong, Xupai Zhang, Ying Le, et, al. Expression and bioinformatics analysis of microRNA-340-3p in bone marrow of patients with myelodysplastic syndrome. Guangxi Medical Journal. 2017;39(09):1285–7+308.
  • Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med. 2021 Jul 5;218(7):e20201544.
  • Notarangelo LD, Kim M-S, Walter JE, et al. Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol. 2016 Apr;16(4):234–246.
  • Min Qing, Meng Xin, Zhou Qinhua, et al. RAG1 splicing mutation causes enhanced B cell differentiation and autoantibody production. Jci Insight. 2021 Oct 8;6(19):e148887.
  • Gan Tingting, Wang Yuhong, Liu Yang, et al. RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Rep. 2021 Oct 12;37(2):109824.
  • Kumari R, Roy U, Desai S, et al. MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep. 2021 Jul 13;36(2):109390.
  • Gazumyan A, Bothmer A, Klein IA, et al. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. In: Tew KD, Fisher PB, editor. Advances in cancer research, Vol 113. Advances in Cancer Research; 2012. p. 167–190.
  • Gough SM, Chung YJ, Aplan PD. Depletion of cytotoxic T-Cells does not protect NUP98-HOXD13 mice from myelodysplastic syndrome but reveals a modest tumor immunosurveillance effect. Plos One. 2012;7(5).
  • Hunter ZR, Xu L, Yang G, et al. Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenstrom macroglobulinemia. Blood. 2016 Aug 11;128(6):827–38.
  • Kang T, Ge M, Wang R, et al. Arsenic sulfide induces RAG1-dependent DNA damage for cell killing by inhibiting NFATc3 in gastric cancer cells. J Exp Clin Cancer Res. 2019 Dec 10;38(1):487.
  • Gee HE, Buffa FM, Harris AL, et al. MicroRNA-related DNA repair/cell-cycle genes independently associated with relapse after radiation therapy for early breast cancer. Int J Radiat Oncol Biol Phys. 2015 Dec 1;93(5):1104–14.
  • Han Q, Gu Y, Gao Y-Q, et al. Characteristics and clinical significance of RAG1 expression in adult B-cell acute lymphoblastic leukemia. Zhongguo shi yan xue ye xue za zhi. 2019 Jun;27(3):735–740.
  • Schatz DG, Swanson PC. V(D)J recombination: Mechanisms of initiation. Annu Rev Genet. 2011;45:167–202.
  • Villa A, Sobacchi C, Notarangelo LD, et al. V(D)J recombination defects in lymphocytes due to RAG mutations: severe immunodeficiency with a spectrum of clinical presentations. Blood. 2001 Jan 1;97(1):81–8.
  • Kim MS, Lapkouski M, Yang W, et al. Crystal structure of the V(D)J recombinase RAG1-RAG2. Nature. 2015 Feb 26;518(7540):507–11.
  • Xu Y, Wang T, Zeng J, et al. Integrative functional genomics implicated the key T-/B-Cell deficiency regulator RAG1 in transarterial chemoembolization of hepatocellular carcinoma. Front Cell Dev Biol. 2021 Sep 27;9:720791.
  • Jiang C, Huang T, Wang Y, et al. Immunoglobulin G expression in lung cancer and its effects on metastasis. Plos One. 2014 May 22;9(5):e97359.
  • Han Q, Ma J, Gu Y, et al. RAG1 high expression associated with IKZF1 dysfunction in adult B-cell acute lymphoblastic leukemia. J Cancer. 2019 Jun 9;10(16):3842–3850.
  • Thomson DW, Shahrin NH, Wang PPS, et al. Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. Leukemia. 2020 Aug;34(8):2051–2063.
  • Yuan M, Wang Y, Qin M, et al. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci. 2021 Jul;112(7):2679–2691.
  • Li J, Li J, Li J, et al. A rare case of acquired immunodeficiency associated with myelodysplastic syndrome. Mol Genet Genomic Med. 2019 Nov;7(11):e923.
  • Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020 Oct 1;383(14):1358-1374.
  • Zhu Y, Wu L. Identification of latent core genes and pathways associated with myelodysplastic syndromes based on integrated bioinformatics analysis. Hematology. 2020 Dec;25(1):299–308.
  • Zhao S, Mo X, Wen Z, et al. Comprehensive bioinformatics analysis reveals the hub genes and pathways associated with multiple myeloma. Hematology. 2022 Dec;27(1):280–292.
  • Liang X, Yao Y, Li H, et al. Clinical significance of decreased GPX1 expression in patients with acute myeloid leukaemia (Non-M3). Jcpsp-Journal of the College of Physicians and Surgeons Pakistan. 2021 Aug;31(8):941–946.
  • Tuerxun N, Wang J, Zhao F, et al. Bioinformatics analysis deciphering the transcriptomic signatures associated with signalling pathways and prognosis in the myelodysplastic syndromes. Hematology. 2022 Dec;27(1):214–231.