1,556
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Whole exome sequencing and rare variant association study to identify genetic modifiers, KLF1 mutations, and a novel double mutation in Thai patients with hemoglobin E/beta-thalassemia

ORCID Icon, , , , , , , , , , , , , , , , , , , , , & show all
Article: 2187155 | Received 26 Sep 2022, Accepted 28 Feb 2023, Published online: 20 Mar 2023

References

  • Flint J, Harding RM, Boyce AJ, et al. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol. 1998;11(1):1–51.
  • Mettananda S, Higgs DR. Molecular basis and genetic modifiers of thalassemia. Hematol Oncol Clin North Am. 2018;32(2):177–191.
  • Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–1199.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842.
  • Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci U S A. 2007;104(27):11346–11351.
  • Liu D, Zhang X, Yu L, et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood. 2014;124(5):803–811.
  • Nuinoon M, Makarasara W, Mushiroda T, et al. A genome-wide association identified the common genetic variants influence disease severity in beta0-thalassemia/hemoglobin E. Hum Genet. 2010;127(3):303–314.
  • Winichagoon P, Fucharoen S, Chen P, et al. Genetic factors affecting clinical severity in beta-thalassemia syndromes. J Pediatr Hematol Oncol. 2000;22(6):573–580.
  • Nuntakarn L, Fucharoen S, Fucharoen G, et al. Molecular, hematological and clinical aspects of thalassemia major and thalassemia intermedia associated with Hb E-beta-thalassemia in Northeast Thailand. Blood Cells Mol Dis. 2009;42(1):32–35.
  • Sripichai O, Makarasara W, Munkongdee T, et al. A scoring system for the classification of beta-thalassemia/Hb E disease severity. Am J Hematol. 2008;83(6):482–484.
  • Barnett IJ, Lee S, Lin X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet Epidemiol. 2013;37(2):142–151.
  • Peloso GM, Rader DJ, Gabriel S, et al. Phenotypic extremes in rare variant study designs. Eur J Hum Genet. 2016;24(6):924–930.
  • Tan AS, Quah TC, Low PS, et al. A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for alpha-thalassemia. Blood. 2001;98(1):250–251.
  • McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122.
  • Dong C, Wei P, Jian X, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24(8):2125–2137.
  • Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814.
  • Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894–3900.
  • Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424.
  • Landrum MJ, Lee JM, Benson M, et al. Clinvar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–D868.
  • Lee S, Abecasis GR, Boehnke M, et al. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95(1):5–23.
  • Brancaleoni V, Di Pierro E, Motta I, et al. Laboratory diagnosis of thalassemia. Int J Lab Hematol. 2016;38(Suppl 1):32–40.
  • Mankhemthong K, Phusua A, Suanta S, et al. Molecular characteristics of thalassemia and hemoglobin variants in prenatal diagnosis program in northern Thailand. Int J Hematol. 2019;110(4):474–481.
  • Panichchob P, Iamdeelert P, Wongsariya P, et al. Molecular spectrum of β-thalassemia mutations in central to eastern Thailand. Hemoglobin. 2021;45(2):97–102.
  • Musallam KM, Vitrano A, Meloni A, et al. Primary HBB gene mutation severity and long-term outcomes in a global cohort of β-thalassaemia. Br J Haematol. 2022;196(2):414–423.
  • Hariharan P, Gorivale M, Sawant P, et al. Significance of genetic modifiers of hemoglobinopathies leading towards precision medicine. Sci Rep. 2021;11(1):20906.
  • Boonyawat B, Monsereenusorn C, Traivaree C. Molecular analysis of beta-globin gene mutations among Thai beta-thalassemia children: results from a single center study. Appl Clin Genet. 2014;7:253–258.
  • Traivaree C, Monsereenusorn C, Rujkijyanont P, et al. Genotype-phenotype correlation among beta-thalassemia and beta-thalassemia/HbE disease in Thai children: predictable clinical spectrum using genotypic analysis. J Blood Med. 2018;9:35–41.
  • Laosombat V, Fucharoen SP, Panich V, et al. Molecular basis of beta thalassemia in the south of Thailand. Am J Hematol. 1992;41(3):194–198.
  • Kountouris P, Lederer CW, Fanis P, et al. Ithagenes: an interactive database for haemoglobin variations and epidemiology. PLoS One. 2014;9(7):e103020.
  • Wajcman H, Kister J, Promé D, et al. Interaction of 2 amino acid substitutions within the same beta chain of human hemoglobin: the examples of Hb Corbeil and Hb Villeparisis. C R Acad Sci III. 1995;318(7):785–794.
  • Hutt PJ, Fairbanks VF, Thibodeau SN, et al. Hb T-Cambodia, a beta chain variant with the mutations of Hb E and Hb D-Punjab, confirmed by DNA analysis. Hemoglobin. 1997;21(3):205–218.
  • Singha K, Fucharoen G, Fucharoen S. Molecular characterisation of haemoglobin E-Udon Thani (HBB:c.[79G > A;92 + 7A > G]): a novel form of Hb E-β-thalassaemia syndrome. J Clin Pathol. 2019;72(4):322–324.
  • Perkins A, Xu X, Higgs DR, et al. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood. 2016;127(15):1856–1862.
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801–805.
  • Zhou D, Liu K, Sun CW, et al. KLF1 regulates BCL11A expression and gamma-to beta-globin gene switching. Nat Genet. 2010;42(9):742–744.
  • Satta S, Perseu L, Moi P, et al. Compound heterozygosity for KLF1 mutations associated with remarkable increase of fetal hemoglobin and red cell protoporphyrin. Haematologica. 2011;96(5):767–770.
  • Huang J, Zhang X, Liu D, et al. Compound heterozygosity for KLF1 mutations is associated with microcytic hypochromic anemia and increased fetal hemoglobin. Eur J Hum Genet. 2015;23(10):1341–1348.
  • rs483352838 RefSNP Report – dbSNP – NCBI. Available from: https://www.ncbi.nlm.nih.gov/snp/rs483352838
  • rs1328031641 RefSNP Report – dbSNP – NCBI. Available from: https://www.ncbi.nlm.nih.gov/snp/rs1328031641
  • rs558942739 RefSNP Report – dbSNP – NCBI. Available from: https://www.ncbi.nlm.nih.gov/snp/rs558942739
  • Phanrahan P, Yamsri S, Teawtrakul N, et al. Molecular analysis of non-transfusion dependent thalassemia associated with hemoglobin E-β-thalassemia disease without α-thalassemia. Mediterr J Hematol Infect Dis. 2019;11(1):e2019038.
  • Xie XM, Liu YN, Li J, et al. A Krüppel-like factor 1 gene mutation ameliorates the severity of β-thalassemia: a case report. Hemoglobin. 2019;43(2):137–139.
  • Hariharan P, Gorivale M, Colah R, et al. Does the novel KLF1 gene mutation lead to a delay in fetal hemoglobin switch? Ann Hum Genet. 2017;81(3):125–128.
  • Fanis P, Kousiappa I, Phylactides M, et al. A novel mutation in the erythroid transcription factor KLF1 is likely responsible for ameliorating β-thalassemia major. Hum Mutat. 2019;40(10):1768–1780.
  • Khamphikham P, Sripichai O, Munkongdee T, et al. Genetic variation of Krüppel-like factor 1 (KLF1) and fetal hemoglobin (HbF) levels in β(0)-thalassemia/HbE disease. Int J Hematol. 2018;107(3):297–310.