1,113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

AKT inhibition sensitizes acute leukemia cells to S63845-induced apoptosis

, , , , , & ORCID Icon show all
Article: 2214465 | Received 21 Mar 2023, Accepted 11 May 2023, Published online: 24 May 2023

References

  • Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–656. doi:10.1038/nrc883.
  • Chipuk JE, Moldoveanu T, Llambi F, et al. The BCL-2 family reunion. Mol Cell. 2010;37:299–310. doi:10.1016/j.molcel.2010.01.025.
  • Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63. doi:10.1038/nrm3722.
  • Moldoveanu T, Follis AV, Kriwacki RW, et al. Many players in BCL-2 family affairs. Trends Biochem. Sci. 2014;39:101–111. doi:10.1016/j.tibs.2013.12.006.
  • Correia C, Lee S-H, Meng XW, et al. Emerging understanding of Bcl-2 biology: implications for neoplastic progression and treatment. Biochim Biophys Acta. 2015;1853:1658–1671. doi:10.1016/j.bbamcr.2015.03.012.
  • Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80. doi:10.1038/cdd.2017.186.
  • Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20:175–193. doi:10.1038/s41580-018-0089-8.
  • Zhou P, Levy NB, Xie H, et al. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood. 2001;97:3902–3909. doi:10.1182/blood.v97.12.3902.
  • Xiang Z, Luo H, Payton JE, et al. Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J Clin Invest. 2010;120:2109–2118. doi:10.1172/JCI39964.
  • Kaufmann SH, Karp JE, Svingen PA, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998;91:991–1000. doi:10.1182/blood.V91.3.991.
  • Meng XW, Lee S-H, Dai H, et al. Mcl-1 as a buffer for proapoptotic Bcl-2 family members during TRAIL-induced apoptosis: a mechanistic basis for sorafenib (Bay 43-9006)-induced TRAIL sensitization. J Biol Chem. 2007;282:29831–29846. doi:10.1074/jbc.M706110200.
  • Satta T, Grant S. Enhancing venetoclax activity in hematological malignancies. Exp Opin Invest Drugs. 2020;29:697–708. doi:10.1080/13543784.2020.1789588.
  • Reed JC. Bcl-2–family proteins and hematologic malignancies: history and future prospects. Blood. 2008;111:3322–3330. doi:10.1182/blood-2007-09-078162.
  • Sarosiek KA, Chonghaile TN, Letai A. Mitochondria: gatekeepers of response to chemotherapy. Trends Cell Biol. 2013;23:612–619. doi:10.1016/j.tcb.2013.08.003.
  • Kotschy A, Szlavik Z, Murray J, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–482. doi:10.1038/nature19830.
  • Szlavik Z, Csekei M, Paczal A, et al. Discovery of S64315, a potent and selective Mcl-1 inhibitor. J Med Chem. 2020;63:13762–13795. doi:10.1021/acs.jmedchem.0c01234.
  • Caenepeel S, Brown SP, Belmontes B, et al. AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies. Cancer Dis. 2018;8:1582–1597. doi:10.1158/2159-8290.CD-18-0387.
  • Caenepeel S, Karen R, Belmontes B, et al. Discovery and preclinical evaluation of AMG 397, a potent, selective and orally bioavailable MCL1 inhibitor. Cancer Res. 2020;80:6218–6218. doi:10.1158/1538-7445.AM2020-6218.
  • Tron AE, Belmonte MA, Adam A, et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat Commun. 2018;9:5341. doi:10.1038/s41467-018-07551-w.
  • Cory S, Roberts AW, Colman PM, et al. Targeting BCL-2-like proteins to kill cancer cells. Trends Cancer. 2016;2:443–460. doi:10.1016/j.trecan.2016.07.001.
  • Roberts AW, Wei AH, Huang DC. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138:1120–1136. doi:10.1182/blood.2020006785.
  • Montero J, Haq R. Adapted to survive: targeting cancer cells with BH3 mimetics adaptation to BH3 mimetics. Cancer Dis. 2022: OF1–OF16. doi:10.1158/2159-8290.CD-21-1334.
  • Diepstraten ST, Anderson MA, Czabotar PE, et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22:45–64. doi:10.1038/s41568-021-00407-4.
  • Opferman JT, Iwasaki H, Ong CC, et al. Obligate role of anti-apoptotic MCL-1 in the survival of hematopoietic stem cells. Science. 2005;307:1101–1104. doi:10.1126/science.1106114.
  • Wang X, Bathina M, Lynch J, et al. Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev. 2013;27:1351–1364. doi:10.1101/gad.215855.113.
  • Thomas RL, Roberts DJ, Kubli DA, et al. Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes Dev. 2013;27:1365–1377. doi:10.1101/gad.215871.113.
  • Hikita H, Takehara T, Shimizu S, et al. Mcl-1 and Bcl-xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology. 2009;50:1217–1226. doi:10.1002/hep.23126.
  • Brennan MS, Chang C, Tai L, et al. Humanized Mcl-1 mice enable accurate preclinical evaluation of MCL-1 inhibitors destined for clinical use. Blood. 2018;132( ):1573–1583. doi:10.1182/blood-2018-06-859405.
  • A study of venetoclax and AMG 176 in patients with relapsed/refractory hematologic malignancies, https://clinicaltrials.gov/ct2/show/results/NCT03797261.
  • Wei AH, Roberts AW, Spencer A, et al. Targeting MCL-1 in hematologic malignancies: rationale and progress. Blood Rev. 2020;44:100672. doi:10.1016/j.blre.2020.100672.
  • Song M, Bode AM, Dong Z, et al. AKT as a therapeutic target for cancer. Cancer Res. 2019;79:1019–1031. doi:10.1158/0008-5472.CAN-18-2738.
  • Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis. 2020;11:797. doi:10.1038/s41419-020-02998-6.
  • Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise. Leuk. Lymph. 2018;59:2524–2534. doi:10.1080/10428194.2017.1421760.
  • Bertacchini J, Heidari N, Mediani L, et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 2015;72:2337–2347. doi:10.1007/s00018-015-1867-5.
  • Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Ann Rev Med. 2016;67:11–28. doi:10.1146/annurev-med-062913-051343.
  • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Dis. 2009;8:627–644. doi:10.1038/nrd2926.
  • Brazzatti J, Klingler-Hoffmann M, Haylock-Jacobs S, et al. Differential roles for the p101 and p84 regulatory subunits of PI3Kγ in tumor growth and metastasis. Oncogene. 2012;31:2350–2361. doi:10.1038/onc.2011.414.
  • Levy DS, Kahana JA, Kumar R, et al. GSK690693, induces growth inhibition and apoptosis in acute lymphoblastic leukemia cell lines. Blood. 2009;113:1723–1729. doi:10.1182/blood-2008-02-137737.
  • Lu J-W, Lin Y-M, Lai Y-L, et al. MK-2206 induces apoptosis of AML cells and enhances the cytotoxicity of cytarabine. Med Oncol. 2015;32:1–9. doi:10.1007/s12032-015-0650-7.
  • Richter A, Fischer E, Holz C, et al. Combined application of Pan-AKT inhibitor MK-2206 and BCL-2 antagonist venetoclax in B-cell precursor acute lymphoblastic leukemia. Int J Mol Sci. 2021;22:2771. doi:10.3390/ijms22052771.
  • Larsen JT, Shanafelt TD, Leis JF, et al. Akt inhibitor MK-2206 in combination with bendamustine and rituximab in relapsed or refractory chronic lymphocytic leukemia: results from the N1087 alliance study. Am J Hematol. 2017;92:759–763. doi:10.1002/ajh.24762.
  • Dai H, Ding H, Peterson KL, et al. Measurement of BH3-only protein tolerance. Cell Death Differ. 2018;25:282–293. doi:10.1038/cdd.2017.156.
  • Dai H, Smith A, Meng XW, et al. Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. J Cell Biol. 2011;194:39–48. doi:10.1083/jcb.201102027.
  • Berenbaum MC. What is synergy? Pharmacol Rev. 1989;41:93–141.
  • Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47. doi:10.1093/nar/gkz114.
  • Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15:410. doi:10.1186/s13059-014-0410-6.
  • Luo W, Pant G, Bhavnasi YK, et al. Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res. 2017;45:W501–W508. doi:10.1093/nar/gkx372.
  • Dai H, Meng XW, Lee SH, et al. Context-dependent Bcl-2/Bak interactions regulate lymphoid cell apoptosis. J Biol Chem. 2009;284:18311–18322. doi:10.1074/jbc.M109.004770.
  • Mai Z, Sun H, Yang F, et al. Bad is essential for Bcl-xL-enhanced Bax shuttling between mitochondria and cytosol. Int J Biochem Cell Biol. 2023;155:106359. doi:10.1016/j.biocel.2022.106359.
  • Pandey V, Zhu T, Ma L, et al. Bad phosphorylation as a target of inhibition in oncology. Cancer Lett. 2018;415:177–186. doi:10.1016/j.canlet.2017.11.017.
  • Pandey V, Wang B, Mohan CD, et al. Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc Natl Acad Sci U S A. 2018;115:E10505–E10514. doi:10.1073/pnas.1804897115.
  • Bui NL, Pandey V, Zhu T, et al. Bad phosphorylation as a target of inhibition in oncology. Cancer Lett. 2018;415:177–186. doi:10.1016/j.canlet.2017.11.017.
  • Danial NN. BAD: undertaker by night, candyman by day. Oncogene. 2008;27(Suppl 1):S53–S70. doi:10.1038/onc.2009.44.
  • Datta SR, Dudek H, Tao X, et al. Greenberg, Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–241. doi:10.1016/s0092-8674(00)80405-5.
  • Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell. 1996;87:629–638. doi:10.1016/s0092-8674(00)81383-5.
  • Zha J, Harada H, Yang E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell. 1996;87:619–628. doi:10.1016/s0092-8674(00)81382-3.
  • Konopleva MY, Walter RB, Faderl SH, et al. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myeloid leukemia. Clin Cancer Res. 2014;20:2226–2235. doi:10.1158/1078-0432.CCR-13-1978.
  • Yuan T, Cantley L. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27:5497–5510. doi:10.1038/onc.2008.245.
  • Qi CL, Huang ML, Zou Y, et al. The IRF2/CENP-N/AKT signaling axis promotes proliferation, cell cycling and apoptosis resistance in nasopharyngeal carcinoma cells by increasing aerobic glycolysis. J Exp Clin Cancer Res. 2021;40:390. doi:10.1186/s13046-021-02191-3.
  • Ma Y, Sender S, Sekora A, et al. The inhibitory response to PI3K/AKT pathway inhibitors MK-2206 and buparlisib is related to genetic differences in pancreatic ductal adenocarcinoma cell lines. Int J Mol Sci. 2022;23:4295. doi:10.3390/ijms23084295.
  • Hirai H, Sootome H, Nakatsuru Y, et al. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs In vitro and In vivoMK-2206 sensitizes tumors to chemotherapy. Mol Cancer Ther. 2010;9:1956–1967. doi:10.1158/1535-7163.MCT-09-1012.
  • Myers AP, Konstantinopoulos PA, Barry WT, et al. Phase II, 2-stage, 2-arm, PIK3CA mutation stratified trial of MK-2206 in recurrent endometrial cancer. Int J Cancer. 2020;147:413–422. doi:10.1002/ijc.32783.
  • Stover EH, Xiong N, Myers AP, et al. A phase II study of MK-2206, an AKT inhibitor, in uterine serous carcinoma. Gynecol Oncol Rep. 2022;40:100974. doi:10.1016/j.gore.2022.100974.
  • Xing Y, Lin NU, Maurer MA, et al. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21:1–12. doi:10.1186/s13058-019-1154-8.
  • Chen L, Willis SN, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17:393–403. doi:10.1016/j.molcel.2004.12.030.
  • Lee EF, Harris TJ, Tran S, et al. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 2019;10:342. doi:10.1038/s41419-019-1568-3.