1,957
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review of immunotargeted therapy for Philadelphia chromosome positive acute lymphoblastic leukaemia: making progress in chemotherapy-free regimens

, , & ORCID Icon
Article: 2335856 | Received 21 Aug 2023, Accepted 23 Mar 2024, Published online: 06 Apr 2024

References

  • Leoni V, Biondi A. Tyrosine kinase inhibitors in BCR-ABL positive acute lymphoblastic leukemia. Haematologica. 2015;100:295–299. doi:10.3324/haematol.2015.124016
  • Jabbour E, Pui CH, Kantarjian H. Progress and innovations in the management of adult acute lymphoblastic leukemia. JAMA Oncol. 2018;4:1413–1420. doi:10.1001/jamaoncol.2018.1915
  • Bassan R, Rossi G, Pogliani EM, et al. Underuse of anthracyclines in women with HER2-positive advanced breast cancer. J Clin Oncol. 2010;28:1120–11120. doi:10.1200/jco.2010.28.15_suppl.1120
  • Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125:3711–3719. doi:10.1182/blood-2015-02-627935
  • Jones D, Thomas D, Yin CC, et al. Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer. 2008;113:––994. doi:10.1002/cncr.23912
  • Xu N, Li YL, Li X, et al. Correlation between deletion of the CDKN2 gene and tyrosine kinase inhibitor resistance in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. J Hematol Oncol. 2016;9:40. doi:10.1186/s13045-016-0270-5
  • Brown PA, Shah B, Advani A, et al. Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19:1079–1109. doi:10.6004/jnccn.2021.0042
  • Wei AH, Ribera JM, Larson RA, et al. Biomarkers associated with blinatumomab outcomes in acute lymphoblastic leukemia. Leukemia. 2021;35:2220–2231. doi:10.1038/s41375-020-01089-x
  • Fujisawa S, Mizuta S, Akiyama H, et al. Phase II study of imatinib-based chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Am J Hematol. 2017;92:367–374. doi:10.1002/ajh.24653
  • Biondi A, Gandemer V, De Lorenzo P, et al. Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol. 2018;5:e641–e652. doi:10.1016/S2352-3026(18)30173-X.
  • Lou Y, Ma Y, Li C, et al. Efficacy and prognostic factors of imatinib plus CALLG2008 protocol in adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Med. 2017;11:229–238. doi:10.1007/s11684-017-0506-y
  • Daver N, Thomas D, Ravandi F, et al. Final report of a phase II study of imatinib mesylate with hyper-CVAD for the front-line treatment of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2015;100:––661. doi:10.3324/haematol.2014.115055
  • Lim SN, Joo YD, Lee KH, et al. Long-term follow-up of imatinib plus combination chemotherapy in patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol. 2015;90:1013–1020. doi:10.1002/ajh.24137
  • Shen S, Chen X, Cai J, et al. Effect of dasatinib vs imatinib in the treatment of pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: a randomized clinical trial. JAMA Oncol. 2020;6:358–366. doi:10.1001/jamaoncol.2019.5868
  • Sugiura I, Doki N, Hata T, et al. Dasatinib-based 2-step induction for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Adv. 2022;6:624–636. doi:10.1182/bloodadvances.2021004607
  • Slayton WB, Schultz KR, Kairalla JA, et al. Dasatinib plus intensive chemotherapy in children, adolescents, and young adults With Philadelphia chromosome-positive acute lymphoblastic leukemia. Results of Children's Oncology Group Trial AALL0622. J Clin Oncol. 2018;36:2306–2314.
  • Wieduwilt MJ, Yin J, Wetzler M, et al. Dasatinib and dexamethasone followed by hematopoietic cell transplantation for adults with Ph-positive ALL. Blood Adv. 2021;5:4691–4700. doi:10.1182/bloodadvances.2021004813
  • Rousselot P, Coude MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016;128:774–782.
  • Ravandi F, Othus M, O'Brien SM, et al. US intergroup study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv. 2016;1:250–259. doi:10.1182/bloodadvances.2016001495
  • Liu B, Wang Y, Zhou C, et al. Nilotinib combined with multi-agent chemotherapy in newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia: a single-center prospective study with long-term follow-up. Ann Hematol 2019;98:633–645. doi:10.1007/s00277-019-03594-1
  • Kim DY, Joo YD, Lim SN, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015;126:746–756.
  • Ribera J-M, García-Calduch O, Ribera J, et al. Ponatinib, chemotherapy, and transplant in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood Advances. 2022;6:5395–5402. doi:10.1182/bloodadvances.2022007764
  • Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018;5:e618–e627. doi:10.1016/S2352-3026(18)30176-5
  • Sasaki K, Jabbour EJ, Ravandi F, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: A propensity score analysis. Cancer. 2016;122:3650–3656. doi:10.1002/cncr.30231
  • Othman T, Moskoff BN, Ho G, et al. Clinical experience with frontline hyper-CVAD-based regimens, including hyper-CVAD plus ponatinib, in patients with acute lymphoblastic leukemia treated at a comprehensive cancer center. Leuk Res. 2022;119:106885. doi:10.1016/j.leukres.2022.106885
  • Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–1796. doi:10.1056/NEJMoa1306494
  • Martinelli G, Papayannidis C, Piciocchi A, et al. INCB84344-201: ponatinib and steroids in frontline therapy for unfit patients with Ph+ acute lymphoblastic leukemia. Blood Advances. 2022;6:1742–1753. doi:10.1182/bloodadvances.2021004821
  • Short NJ, Konopleva M, Kadia T, et al. An effective chemotherapy-free regimen of ponatinib plus venetoclax for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Am J Hematol. 2021;96:E229–E232.
  • Sasaki K, Kantarjian HM, Short NJ, et al. Prognostic factors for progression in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia in complete molecular response within 3 months of therapy with tyrosine kinase inhibitors. Cancer. 2021;127:2648–2656. doi:10.1002/cncr.33529
  • Biondi A, Cario G, De Lorenzo P, et al. Long-term follow up of pediatric Philadelphia positive acute lymphoblastic leukemia treated with the EsPhALL2004 study: high white blood cell count at diagnosis is the strongest prognostic factor. Haematologica. 2019;104:––e16. doi:10.3324/haematol.2018.196105
  • Ahmed U, Ahmed D, Awan MN, et al. Outcomes of Philadelphia positive acute lymphoblastic leukemia in adolescent and young adults. Cureus. 2022;14:e32467.
  • Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37:530–542. doi:10.1016/j.ccell.2020.03.006
  • Kodama Y, Manabe A, Kawasaki H, et al. Salvage therapy for children with relapsed or refractory Philadelphia chromosome-positive acute lymphoblastic leukemia. Pediatr Blood Cancer. 2017;64(8):e26423. doi:10.1002/pbc.26423
  • Gambacorti-Passerini C, Kantarjian HM, Kim DW, et al. Long-term efficacy and safety of bosutinib in patients with advanced leukemia following resistance/intolerance to imatinib and other tyrosine kinase inhibitors. Am J Hematol. 2015;90:755–768. doi:10.1002/ajh.24034
  • Borthakur G, Dombret H, Schafhausen P, et al. A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy. Haematologica. 2015;100:898–904. doi:10.3324/haematol.2014.115279
  • Olivieri A, Manzione L. Dasatinib: a new step in molecular target therapy. Ann Oncol. 2007;18(Suppl 6):42–46.
  • Malani D, Yadav B, Kumar A, et al. KIT pathway upregulation predicts dasatinib efficacy in acute myeloid leukemia. Leukemia. 2020;34:2780–2784. doi:10.1038/s41375-020-0978-7
  • Gong X, Li L, Wei H, et al. A higher dose of dasatinib May increase the possibility of crossing the blood-brain barrier in the treatment of patients With Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Ther. 2021;43:1265–1271. doi:10.1016/j.clinthera.2021.05.009
  • Killock D. Dasatinib versus imatinib in paediatric ALL. Nat Rev Clin Oncol. 2020;17:197.
  • Advani AS, Moseley A, O'Dwyer KM, et al. Dasatinib/prednisone induction followed by blinatumomab/dasatinib in Ph+ acute lymphoblastic leukemia. Blood Advances. 2023;7:1279–1285. doi:10.1182/bloodadvances.2022008216
  • Blay JY, von Mehren M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin Oncol. 2011;38(Suppl 1 ):9. doi:10.1053/j.seminoncol.2010.11.010
  • Tian X, Zhang H, Heimbach T, et al. Clinical pharmacokinetic and pharmacodynamic overview of nilotinib, a selective tyrosine kinase inhibitor. J Clin Pharmacol. 2018;58:1540. doi:10.1002/jcph.1111
  • Soverini S, De Benedittis C, Papayannidis C, et al. Drug resistance and BCR-ABL kinase domain mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia from the imatinib to the second-generation tyrosine kinase inhibitor era: The main changes are in the type of mutations, but not in the frequency of mutation involvement. Cancer. 2014;120:1002–1009. doi:10.1002/cncr.28522
  • Januzzi JL, Garasic JM, Kasner SE, et al. Retrospective analysis of arterial occlusive events in the PACE trial by an independent adjudication committee. J Hematol Oncol. 2022;15:1. doi:10.1186/s13045-021-01221-z
  • Pulte ED, Chen H, Price LSL, et al. Fda approval summary: revised indication and dosing regimen for ponatinib based on the results of the OPTIC trial. Oncologist. 2022;27:149–157. doi:10.1093/oncolo/oyab040
  • Marchesi F, Salvatorelli E, Renzi D, et al. Efficacy and safety of low dose ponatinib in a case of Ph-positive acute lymphoblastic leukaemia. Br J Haematol. 2019;187:e15–e17.
  • He JB, Zhang X, Guo ZW, et al. Ponatinib therapy in recurrent Philadelphia chromosome-positive central nervous system leukemia with T315I mutation after allo-HSCT. Int J Cancer. 2020;147:1071–1077. doi:10.1002/ijc.32817
  • Leotta S, Markovic U, Pirosa MC, et al. The role of ponatinib in adult BCR-ABL1 positive acute lymphoblastic leukemia after allogeneic transplantation: a real-life retrospective multicenter study. Ann Hematol. 2021;100:1743–1753. doi:10.1007/s00277-021-04504-0
  • Chen H, Xu LP, Zhang XH, et al. Safety and outcomes of maintenance therapy with third-generation tyrosine kinase inhibitor after allogeneic hematopoietic cell transplantation in Philadelphia chromosome positive acute lymphoblastic leukemia patients with T315I mutation. Leuk Res. 2022;121:106930. doi:10.1016/j.leukres.2022.106930
  • Brissot E, Labopin M, Beckers MM, et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica. 2015;100:392–399. doi:10.3324/haematol.2014.116954
  • Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia in adults. Cancers (Basel). 2022;14(7):1805. doi: 10.3390/cancers14071805
  • Akahoshi Y, Nishiwaki S, Mizuta S, et al. Tyrosine kinase inhibitor prophylaxis after transplant for Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Sci. 2019;110:3255–3266. doi:10.1111/cas.14167
  • Zhang FH, Ling YW, Zhai X, et al. The effect of imatinib therapy on the outcome of allogeneic stem cell transplantation in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia. Hematology. 2013;18:151–157. doi:10.1179/1607845412Y.0000000052
  • Caocci G, Vacca A, Ledda A, et al. Prophylactic and preemptive therapy with dasatinib after hematopoietic stem cell transplantation for Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2012;18:652–654. doi:10.1016/j.bbmt.2011.12.587
  • Webster JA, Luznik L, Tsai HL, et al. Allogeneic transplantation for Ph+ acute lymphoblastic leukemia with posttransplantation cyclophosphamide. Blood Adv. 2020;4:5078–5088. doi:10.1182/bloodadvances.2020002945
  • Tran TH, Langlois S, Meloche C, et al. Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL consortium protocol 16-001. Blood Adv. 2022;6:1329–1341. doi:10.1182/bloodadvances.2021005634
  • Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–166. doi:10.1016/j.ccr.2012.06.005
  • Sasaki Y, Kantarjian HM, Short NJ, et al. Genetic correlates in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia treated with hyper-CVAD plus dasatinib or ponatinib. Leukemia. 2022;36:1253–1260. doi:10.1038/s41375-021-01496-8
  • Wang J, Jiang Q, Xu LP, et al. Allogeneic stem cell transplantation versus tyrosine kinase inhibitors combined with chemotherapy in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2018;24:741–750. doi:10.1016/j.bbmt.2017.12.777
  • Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27:––5207. doi:10.1200/jco.2009.27.15_suppl.11005
  • Kim M, Park J, Kim DW, et al. Impact of IKZF1 deletions on long-term outcomes of allo-SCT following imatinib-based chemotherapy in adult Philadelphia chromosome-positive ALL. Bone Marrow Transplant. 2015;50:354–362. doi:10.1038/bmt.2014.281
  • Foa R, Bassan R, Vitale A, et al. Dasatinib-Blinatumomab for Ph-positive acute lymphoblastic leukemia in adults. N Engl J Med. 2020;383:1613–1623. doi:10.1056/NEJMoa2016272
  • Xie M, Lu Y, Ouyang G, et al. Dasatinib plus prednisone as induction and consolidation for adults with Ph-positive acute lymphoblastic leukaemia: A single-arm, multicentre, phase 2 trial. Br J Haematol. 2023;202:1119–1126. doi:10.1111/bjh.18975
  • Xu N, Li YL, Zhou X, et al. Cdkn2 gene deletion as poor prognosis predictor involved in the progression of adult B-lineage acute lymphoblastic leukemia patients. J Cancer. 2015;6:1114–1120. doi:10.7150/jca.11959
  • Pfeifer H, Raum K, Markovic S, et al. Genomic CDKN2A/2B deletions in adult Ph+ ALL are adverse despite allogeneic stem cell transplantation. Blood. 2018;131:1464–1475. doi:10.1182/blood-2017-07-796862
  • Fedullo AL, Messina M, Elia L, et al. Prognostic implications of additional genomic lesions in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2019;104:312–318. doi:10.3324/haematol.2018.196055
  • Ghobadi A, Slade M, Kantarjian H, et al. The role of allogeneic transplant for adult Ph+ ALL in CR1 with complete molecular remission: a retrospective analysis. Blood. 2022;140:––2112. doi:10.1182/blood-2022-155582
  • Lou Y, Ma Y, Li C, et al. Efficacy and prognostic factors of imatinib plus CALLG2008 protocol in adult patients with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia. Front Med. 2017;11:229–238. doi:10.1007/s11684-017-0506-y
  • Saini N, Marin D, Ledesma C, et al. Impact of TKIs post-allogeneic hematopoietic cell transplantation in Philadelphia chromosome-positive ALL. Blood. 2020;136:1786–1789. doi:10.1182/blood.2019004685
  • Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol. 2009;27:5175–5181. doi:10.1200/JCO.2008.21.2514
  • Chang J, Douer D, Aldoss I, et al. Combination chemotherapy plus dasatinib leads to comparable overall survival and relapse-free survival rates as allogeneic hematopoietic stem cell transplantation in Philadelphia positive acute lymphoblastic leukemia. Cancer Med. 2019;8:2832–2839. doi:10.1002/cam4.2153
  • Zeng Q, Xiang B, Liu Z. Comparison of allogeneic hematopoietic stem cell transplantation and TKI combined with chemotherapy for adult Philadelphia chromosome positive acute lymphoblastic leukemia: a systematic review and meta-analysis. Cancer Med. 2021;10:––8753. doi:10.1002/cam4.3834
  • Short NJ, Kantarjian HM, Ravandi F, et al. Efficacy and safety outcomes in the phase 3 INO-vate trial By baseline CD22 positivity assessed By local laboratories. Blood. 2019;134:1344––11344. doi:10.1182/blood-2019-122097
  • Jabbour E, Short NJ, Jain N, et al. The evolution of acute lymphoblastic leukemia research and therapy at MD anderson over four decades. J Hematol Oncol. 2023;16:22. doi:10.1186/s13045-023-01476-8
  • Couturier MA, Thomas X, Raffoux E, et al. Blinatumomab + ponatinib for relapsed/refractory Philadelphia chromosome-positive acute lymphoblastic leukemia in adults. Leuk Lymphoma. 2021;62:620–629. doi:10.1080/10428194.2020.1844198
  • Tian Y, Ai H, Wei JX, et al. Efficacy analysis of venetoclax combined with TKI and dexamethasone-containing low-dose chemotherapy for relapsed/refractory Ph(+)acute B-lymphoblastic leukemia. Zhonghua yi xue za zhi. 2022;102:745–748.
  • Wang H, Yang C, Shi T, et al. Venetoclax-ponatinib for T315I/compound-mutated Ph+ acute lymphoblastic leukemia. Blood Cancer J. 2022;12:20. doi:10.1038/s41408-022-00621-9
  • Jabbour EJ, Short NJ, Jain N, et al. Blinatumomab is associated with favorable outcomes in patients with B-cell lineage acute lymphoblastic leukemia and positive measurable residual disease at a threshold of 10(-4) and higher. Am J Hematol. 2022;97:1135–1141. doi:10.1002/ajh.26634
  • Martinelli G, Boissel N, Chevallier P, et al. Long-term follow-up of blinatumomab in patients with relapsed/refractory Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukaemia: final analysis of ALCANTARA study. Eur J Cancer. 2021;146:107–114. doi:10.1016/j.ejca.2020.12.022
  • Boissel N, Chiaretti S, Papayannidis C, et al. Real-world use of blinatumomab in adult patients with B-cell acute lymphoblastic leukemia in clinical practice: results from the NEUF study. Blood Cancer J. 2023;13(2).
  • Jabbour E, Short NJ, Jain N, et al. Ponatinib and blinatumomab for Philadelphia chromosome-positive acute lymphoblastic leukaemia: a US, single-centre, single-arm, phase 2 trial. Lancet Haematol. 2023;10:––e34. doi:10.1016/S2352-3026(23)00064-9
  • Yang F, Yang X, Bao X, et al. Anti-CD19 chimeric antigen receptor T-cells induce durable remission in relapsed Philadelphia chromosome-positive ALL with T315I mutation. Leuk Lymphoma. 2020;61:429–436. doi:10.1080/10428194.2019.1663417
  • Leahy AB, Devine KJ, Li Y, et al. Impact of high-risk cytogenetics on outcomes for children and young adults receiving CD19-directed CAR T-cell therapy. Blood. 2022;139:2173–2185. doi:10.1182/blood.2021012727
  • Yang J, He J, Zhang X, et al. Next-day manufacture of a novel anti-CD19 CAR-T therapy for B-cell acute lymphoblastic leukemia: first-in-human clinical study. Blood Cancer J. 2022;12:104. doi:10.1038/s41408-022-00694-6
  • Zhang X, Lu XA, Yang J, et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features. Blood Adv. 2020;4:2325–2338. doi:10.1182/bloodadvances.2020001466
  • Sasaki K, Kantarjian H, Wierda W, et al. Phase 2 study of hyper-CMAD with liposomal vincristine for patients with newly diagnosed acute lymphoblastic leukemia. Am J Hematol. 2020;95:734–739. doi:10.1002/ajh.25784
  • Marks DI, Kirkwood AA, Rowntree CJ, et al. Addition of four doses of rituximab to standard induction chemotherapy in adult patients with precursor B-cell acute lymphoblastic leukaemia (UKALL14): a phase 3, multicentre, randomised controlled trial. Lancet Haematol. 2022;9:e262–e275.
  • Jain N, Maiti A, Ravandi F, et al. Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. Am J Hematol. 2021;96:––1007. doi:10.1002/ajh.26061
  • Senapati J, Short N, Alvarado Y, et al. A phase II study of inotuzumab ozogamicin for the treatment of measurable residual disease-positive B-cell acute lymphoblastic leukemia. Blood. 2022;140:3253–3255. doi:10.1182/blood-2022-170667
  • Stock W, Martinelli G, Stelljes M, et al. Efficacy of inotuzumab ozogamicin in patients with Philadelphia chromosome-positive relapsed/refractory acute lymphoblastic leukemia. Cancer. 2021;127:905–913. doi:10.1002/cncr.33321
  • Leonard JT, Rowley JSJ, Eide CA, Traer E, Hayes-Lattin B, Loriaux M, Spurgeon SE, et al. Targeting BCL-2 and ABL/LYN in Philadelphia chromosome-positive acute lymphoblastic leukemia. Sci Transl Med 2016;8:354ra114.
  • [De] Dominici M, Porazzi P, Soliera AR, et al. Targeting CDK6 and BCL2 exploits the “MYB addiction” of Ph(+) acute lymphoblastic leukemia. Cancer Res. 2018;78:1097–1109. doi:10.1158/0008-5472.CAN-17-2644
  • Massimino M, Vigneri P, Stella S, et al. Combined inhibition of Bcl2 and Bcr-Abl1 exercises anti-leukemia activity but does Not eradicate the primitive leukemic cells. J Clin Med. 2021;10:5606. doi:10.3390/jcm10235606
  • Hesham HM, Lasheen DS, Abouzid KAM. Chimeric HDAC inhibitors: comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev. 2018;38:2058–2109. doi:10.1002/med.21505
  • Marks PA. The clinical development of histone deacetylase inhibitors as targeted anticancer drugs. Expert Opin Investig Drugs. 2010;19:1049–1066. doi:10.1517/13543784.2010.510514
  • Yang L, Qiu Q, Tang M, et al. Purinostat mesylate Is a uniquely potent and selective inhibitor of HDACs for the treatment of BCR-ABL-induced B-cell acute lymphoblastic leukemia. Clin Cancer Res. 2019;25:7527–7539. doi:10.1158/1078-0432.CCR-19-0516
  • Tharkar-Promod S, Johnson DP, Bennett SE, et al. HDAC1,2 inhibition and doxorubicin impair Mre11-dependent DNA repair and DISC to override BCR-ABL1-driven DSB repair in Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia. Leukemia. 2018;32:49–60. doi:10.1038/leu.2017.174
  • Okabe S, Tauchi T, Ohyashiki K. Efficacy of MK-0457 and in combination with vorinostat against Philadelphia chromosome positive acute lymphoblastic leukemia cells. Ann Hematol. 2010;89:1081–1087. doi:10.1007/s00277-010-0998-x
  • Losson H, Gajulapalli SR, Lernoux M, et al. The HDAC6 inhibitor 7b induces BCR-ABL ubiquitination and downregulation and synergizes with imatinib to trigger apoptosis in chronic myeloid leukemia. Pharmacol Res. 2020;160:105058. doi:10.1016/j.phrs.2020.105058
  • Dasmahapatra G, Patel H, Nguyen T, et al. PLK1 inhibitors synergistically potentiate HDAC inhibitor lethality in imatinib mesylate-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19:6766––66776. doi:10.1158/1078-0432.CCR-13-0128
  • Del Nagro CJ, Otero DC, Anzelon AN, et al. CD19 function in central and peripheral B-cell development. Immunol Res 2005;31:119–132. doi:10.1385/IR:31:2:119
  • Tabernero MD, Bortoluci AM, Alaejos I, et al. Adult precursor B-ALL with BCR/ABL gene rearrangements displays a unique immunophenotype based on the pattern of CD10, CD34, CD13 and CD38 expression. Leukemia. 2001;15:406–414. doi:10.1038/sj.leu.2402060
  • Rosenthal J, Naqvi AS, Luo M, et al. Heterogeneity of surface CD19 and CD22 expression in B lymphoblastic leukemia. Am J Hematol. 2018;93:E352–E355.
  • Wu J, Fu J, Zhang M, et al. Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia. J Hematol Oncol. 2015;8:104. doi:10.1186/s13045-015-0195-4
  • Zhao Y, Aldoss I, Qu C, et al. Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood. 2021;137:471–484. doi:10.1182/blood.2020006287
  • Rambaldi A, Ribera JM, Kantarjian HM, et al. Blinatumomab compared with standard of care for the treatment of adult patients with relapsed/refractory Philadelphia chromosome–positive B-precursor acute lymphoblastic leukemia. Cancer. 2020;126:304–310. doi:10.1002/cncr.32558
  • Puzzolo MC, Radice G, Peragine N, et al. Host immune system modulation in Ph+ acute lymphoblastic leukemia patients treated with dasatinib and blinatumomab. Blood. 2021;138:2290–2293.
  • Wang Z, Wu Z, Liu Y, et al. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10:53. doi:10.1186/s13045-017-0423-1
  • He J, Xu N, Zhou H, et al. Case report: chimeric antigen receptor T cells induced late severe cytokine release syndrome. Front Oncol. 2022;12:893928. doi:10.3389/fonc.2022.893928
  • Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–679. doi:10.1158/2159-8290.CD-16-0040
  • Hernani R, Benzaquen A, Solano C. Toxicities following CAR-T therapy for hematological malignancies. Cancer Treat Rev. 2022;111:102479. doi:10.1016/j.ctrv.2022.102479
  • Zhu YM, Wu Z, Tan YP, et al. Anti-CD19 chimeric antigen receptor T-cell therapy for adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Medicine (Baltimore). 2016;95:e5676. doi:10.1097/MD.0000000000005676
  • Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019;16:372–385.
  • Pavlasova G, Mraz M. The regulation and function of CD20: an “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105:1494–1506. doi:10.3324/haematol.2019.243543
  • Jaso J, Thomas DA, Cunningham K, et al. Prognostic significance of immunophenotypic and karyotypic features of Philadelphia positive B-lymphoblastic leukemia in the era of tyrosine kinase inhibitors. Cancer. 2011;117:4009–4017. doi:10.1002/cncr.25978
  • Pierpont TM, Limper CB, Richards KL. Past, present, and future of rituximab—The world’s first oncology monoclonal antibody therapy. Front Oncol. 2018;8:163. doi:10.3389/fonc.2018.00163
  • Cassaday RD, Stevenson PA, Wood BL, et al. Description and prognostic significance of the kinetics of minimal residual disease status in adults with acute lymphoblastic leukemia treated with HyperCVAD. Am J Hematol 2018;93:546–552. doi:10.1002/ajh.25030
  • Clark EA, Giltiay NV. Cd22: A regulator of innate and adaptive B cell responses and autoimmunity. Front Immunol. 2018;9:2235. doi:10.3389/fimmu.2018.02235
  • Corrente F, Bellesi S, Metafuni E, et al. Role of flow-cytometric immunophenotyping in prediction of BCR/ABL1 gene rearrangement in adult B-cell acute lymphoblastic leukemia. Cytometry B Clin Cytom. 2018;94:468–476. doi:10.1002/cyto.b.21605
  • Lamb YN. Inotuzumab ozogamicin: first global approval. Drugs. 2017;77:1603–1610. doi:10.1007/s40265-017-0802-5
  • Pirosa MC, Leotta S, Cupri A, et al. Long-Term molecular remission achieved by antibody anti-CD22 and ponatinib in a patient affected by Ph'+ acute lymphoblastic leukemia relapsed after second allogeneic hematopoietic stem cell transplantation: A case report. Chemotherapy. 2018;63:220–224. doi:10.1159/000492941
  • Micheva I, Gerov V, Dimitrova S, et al. Efficacy of inotuzumab ozogamicin plus ponatinib followed by allogeneic stem cell transplantation in a patient with relapsed Philadelphia chromosome-positive acute lymphoblastic leukemia. Case Rep Hematol. 2021;2021:1717506.
  • Molica M, Mazzone C, Cordone I, et al. Durable molecular remission in an elderly patient affected by relapsed Ph'+ acute lymphoblastic leukemia with T315I and concomitant p190 and p210 expression achieved by inotuzumab and ponatinib. Chemotherapy. 2021;66:78–81. doi:10.1159/000516593
  • Krupka C, Kufer P, Kischel R, et al. CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330. Blood. 2014;123:356–365. doi:10.1182/blood-2013-08-523548
  • Cimino G, Pane F, Elia L, et al. The role of BCR/ABL isoforms in the presentation and outcome of patients with Philadelphia-positive acute lymphoblastic leukemia: a seven-year update of the GIMEMA 0496 trial. Haematologica. 2006;91:377–380.
  • Ohki K, Takahashi H, Fukushima T, et al. Impact of immunophenotypic characteristics on genetic subgrouping in childhood acute lymphoblastic leukemia: Tokyo children's cancer study group (TCCSG) study L04-16. Genes Chromosomes Cancer. 2020;59:551–561. doi:10.1002/gcc.22858
  • Golay J, Di Gaetano N, Amico D, et al. Gemtuzumab ozogamicin (Mylotarg) has therapeutic activity against CD33 acute lymphoblastic leukaemias in vitro and in vivo. Br J Haematol 2005;128:310–317. doi:10.1111/j.1365-2141.2004.05322.x
  • Chevallier P, Mahe B, Garand R, et al. Combination of chemotherapy and gemtuzumab ozogamicin in adult Philadelphia positive acute lymphoblastic leukemia patient harboring CD33 expression. Int J Hematol. 2008;88:209–211. doi:10.1007/s12185-008-0123-2
  • de Vetten MP, Jansen JH, van der Reijden BA, et al. Molecular remission of Philadelphia/bcr-abl-positive acute myeloid leukaemia after treatment with anti-CD33 calicheamicin conjugate (gemtuzumab ozogamicin, CMA-676). Br J Haematol. 2000;111:277–279.