127
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Acute exercise on complex motor memory retention: the role of task cognitive demands

ORCID Icon &
Received 09 Jun 2023, Accepted 30 Oct 2023, Published online: 02 Nov 2023

References

  • Amico, G., & Schaefer, S. (2022). Tennis expertise reduces costs in cognition but not in motor skills in a cognitive-motor dual-task condition. Acta Psychologica, 223(January), 103503. https://doi.org/10.1016/j.actpsy.2022.103503
  • Angulo-Barroso, R., Ferrer-Uris, B., & Busquets, A. (2019). Enhancing children’s motor memory retention through acute intense exercise: Effects of different exercise durations. Frontiers in Psychology, 10(AUG), 1–9. https://doi.org/10.3389/fpsyg.2019.02000
  • Baird, J., Gaughan, M., Saffer, H., Sarzynski, M., Herter, T., Fritz, S., den Ouden, D., & Stewart, J. (2018). The effect of energy-matched exercise intensity on brain-derived neurotrophic factor and motor learning. Neurobiology of Learning and Memory, 156, 33–44. https://doi.org/10.1016/j.nlm.2018.10.008
  • Basso, J. C., Shang, A., Elman, M., Karmouta, R., & Suzuki, W. A. (2015). Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults. Journal of the International Neuropsychological Society, 21(10), 791–801. https://doi.org/10.1017/S135561771500106X
  • Beck, M. M., Grandjean, M. U., Hartmand, S., Spedden, M. E., Christiansen, L., Roig, M., & Lundbye-Jensen, J. (2020). Acute exercise protects newly formed motor memories against rTMS-induced interference targeting primary motor cortex. Neuroscience, 436, 110–121. https://doi.org/10.1016/j.neuroscience.2020.04.016
  • Charalambous, C. C., French, M. A., Morton, S. M., & Reisman, D. S. (2019). A single high-intensity exercise bout during early consolidation does not influence retention or relearning of sensorimotor locomotor long-term memories. Experimental Brain Research, 237(11), 2799–2810. https://doi.org/10.1007/s00221-019-05635-7
  • Di Rienzo, F., Debarnot, U., Daligault, S., Saruco, E., Delpuech, C., Doyon, J., Collet, C., & Guillot, A. (2016). Online and offline performance gains following motor imagery practice: A comprehensive review of behavioral and neuroimaging studies. Frontiers in Human Neuroscience, 10(June), 1–15. https://doi.org/10.3389/fnhum.2016.00315
  • Ferrer-Uris, B., Busquets, A., & Angulo-Barroso, R. (2018). Adaptation and retention of a perceptual-motor task in children: Effects of a single bout of intense endurance exercise. Journal of Sport and Exercise Psychology, 40(1), 1–9. https://doi.org/10.1123/jsep.2017-0044
  • Ferrer-Uris, B., Busquets, A., Lopez-Alonso, V., Fernandez-Del-Olmo, M., & Angulo-Barroso, R. (2017). Enhancing consolidation of a rotational visuomotor adaptation task through acute exercise. PLoS ONE, 12(4), e0175296–9. https://doi.org/10.1371/journal.pone.0175296
  • Helm, E. E., Matt, K. S., Kirschner, K. F., Pohlig, R. T., Kohl, D., & Reisman, D. S. (2017). The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning. Neurobiology of Learning and Memory, 144, 77–85. https://doi.org/10.1016/j.nlm.2017.06.003
  • Hodges, N. J., & Lohse, K. R. (2022). An extended challenge-based framework for practice design in sports coaching. Journal of Sports Sciences, 40(7), 754–768. https://doi.org/10.1080/02640414.2021.2015917
  • Hung, A., Roig, M., Gillen, J. B., Sabiston, C. M., Swardfager, W., & Chen, J. L. (2021). Aerobic exercise and aerobic fitness level do not modify motor learning. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-020-79139-8
  • Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning - Evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710–2715. https://doi.org/10.1111/j.1460-9568.2012.08175.x
  • Karlinsky, A., & Hodges, N. J. (2018). Dyad practice impacts self-directed practice behaviors and motor learning outcomes in a contextual interference paradigm. Journal of Motor Behavior, 50(5), 579–589. https://doi.org/10.1080/00222895.2017.1378996
  • Kiss, R., Brueckner, D., & Muehlbauer, T. (2018). Effects of single compared to dual task practice on learning a dynamic balance task in young adults. Frontiers in Psychology, 9(MAR), https://doi.org/10.3389/fpsyg.2018.00311
  • Lauber, B., & Keller, M. (2014). Improving motor performance: Selected aspects of augmented feedback in exercise and health. European Journal of Sport Science, 14(1), 36–43. https://doi.org/10.1080/17461391.2012.725104
  • Lundbye-Jensen, J., Skriver, K., Nielsen, J. B., & Roig, M. (2017). Acute exercise improves motor memory consolidation in preadolescent children. Frontiers in Human Neuroscience, 11(April), 1–10. https://doi.org/10.3389/fnhum.2017.00182
  • Mang, C. S., Snow, N. J., Campbell, K. L., Ross, C. J. D., & Boyd, L. A. (2014). A single bout of high-intensity aerobic exercise facilitates response to paired associative stimulation and promotes sequence-specific implicit motor learning. Journal of Applied Physiology, 117(11), 1325–1336. https://doi.org/10.1152/japplphysiol.00498.2014
  • Mang, C. S., Snow, N. J., Wadden, K. P., Campbell, K. L., & Boyd, L. A. (2016). High-Intensity aerobic exercise enhances motor memory retrieval. Medicine & Science in Sports & Exercise, 48(12), 2477–2486. https://doi.org/10.1249/MSS.0000000000001040
  • Marin, B., Bringard, A., Logrieco, M. G., Lauer, E., Imobersteg, N., Thomas, A., Ferretti, G., Schwartz, S., & Igloi, K. (2020). Effect of acute physical exercise on motor sequence memory. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-74170-1
  • Moriarty, T., Johnson, A., Thomas, M., Evers, C., Auten, A., Cavey, K., Dorman, K., & Bourbeau, K. (2022). Acute aerobic exercise-induced motor priming improves piano performance and alters motor cortex activation. Frontiers in Psychology, 13), https://doi.org/10.3389/fpsyg.2022.825322
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4
  • Ostadan, F., Centeno, C., Daloze, J. F., Frenn, M., Lundbye-Jensen, J., & Roig, M. (2016). Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory. Neurobiology of Learning and Memory, 136, 196–203. https://doi.org/10.1016/j.nlm.2016.10.009
  • Park, S. Y., Reinl, M., & Schott, N. (2021). Effects of acute exercise at different intensities on fine motor-cognitive dual-task performance while walking: A functional near-infrared spectroscopy study. European Journal of Neuroscience, 54(12), 8225–8248. https://doi.org/10.1111/ejn.15241
  • Park, S. Y., & Schott, N. (2022). The immediate and sustained effects of exercise-induced hemodynamic response on executive function during fine motor-cognitive tasks using functional near-infrared spectroscopy. Journal of Integrative Neuroscience, 21(3), https://doi.org/10.31083/j.jin2103098
  • Pendleton, D. M., Sakalik, M. L., Moore, M. L., & Tomporowski, P. D. (2016). Mental engagement during cognitive and psychomotor tasks: Effects of task type, processing demands, and practice. International Journal of Psychophysiology, 109(October), 124–131. https://doi.org/10.1016/j.ijpsycho.2016.08.012
  • Pereira, T., Abreu, A. M., & Castro-Caldas, A. (2013). Understanding task- and expertise-specific motor acquisition and motor memory formation and consolidation. Perceptual and Motor Skills, 117(1), 108–129. https://doi.org/10.2466/23.25.PMS.117x14z0
  • Pescatello, L. S. (2014). Acsm’s guidelines for exercise testing and prescription (9th ed.). Wolters Kluwer/Lippincott Williams & Wilkins Health. http://www.phac-aspc.gc.ca/pau-uap/paguide/.
  • Pesce, C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. Journal of Sport and Exercise Psychology, 34(6), 766–786. https://doi.org/10.1123/jsep.34.6.766
  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., Celnik, P. A., & Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590–1595. https://doi.org/10.1073/pnas.0805413106
  • Roig, M., Skriver, K., Lundbye-Jensen, J., Kiens, B., & Nielsen, J. B. (2012). A single bout of exercise improves motor memory. PLoS ONE, 7(9), e44594–32. https://doi.org/10.1371/journal.pone.0044594
  • Singh, A. M., Neva, J. L., & Staines, W. R. (2016). Aerobic exercise enhances neural correlates of motor skill learning. Behavioural Brain Research, 301, 19–26. https://doi.org/10.1016/j.bbr.2015.12.020
  • Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B., & Nielsen, J. B. (2014). Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiology of Learning and Memory, 116, 46–58. https://doi.org/10.1016/j.nlm.2014.08.004
  • Spriggs, M. J., Thompson, C. S., Moreau, D., McNair, N. A., Wu, C. C., Lamb, Y. N., McKay, N. S., King, R. O. C., Antia, U., Shelling, A. N., Hamm, J. P., Teyler, T. J., Russell, B. R., Waldie, K. E., & Kirk, I. J. (2019). Human sensory LTP predicts memory performance and is modulated by the BDNF Val66Met polymorphism. Frontiers in Human Neuroscience, 13), https://doi.org/10.3389/fnhum.2019.00022
  • Stavrinos, E., & Coxon, J. P. (2017). High-intensity interval exercise promotes motor cortex disinhibition and early motor skill consolidation. Journal of Cognitive Neuroscience, 139), https://doi.org/10.1162/jocn
  • Swarbrick, D., Kiss, A., Trehub, S., Tremblay, L., Alter, D., & Chen, J. L. (2020). Hiit the road jack: An exploratory study on the effects of an acute bout of cardiovascular high-intensity interval training on piano learning. Frontiers in Psychology, 11(September), 1–17. https://doi.org/10.3389/fpsyg.2020.02154
  • Thomas, R., Beck, M. M., Lind, R. R., Korsgaard Johnsen, L., Geertsen, S. S., Christiansen, L., Ritz, C., Roig, M., & Lundbye-Jensen, J. (2016). Acute exercise and motor memory consolidation: The role of exercise timing. Neural Plasticity, 2016. https://doi.org/10.1155/2016/6205452
  • Thomas, R., Flindtgaard, M., Skriver, K., Geertsen, S., Christiansen, L., Korsgaard, L., Busk, D. V. P., Bojsen-Møller, E., Madsen, M. J., Ritz, C., Roig, M., & Lundbye-Jensen, J. (2017). Acute exercise and motor memory consolidation: Does exercise type play a role? Scandinavian Journal of Medicine & Science in Sports, 27(11), 1523–1532. https://doi.org/10.1111/sms.12791
  • Thomas, R., Johnsen, L. K., Geertsen, S. S., Christiansen, L., Ritz, C., Roig, M., & Lundbye-Jensen, J. (2016). Acute exercise and motor memory consolidation: The role of exercise intensity. PLoS ONE, 11(7), e0159589–16. https://doi.org/10.1371/journal.pone.0159589
  • Tian, S., Mou, H., & Qiu, F. (2021). Sustained effects of high-intensity interval exercise and moderate-intensity continuous exercise on inhibitory control. International Journal of Environmental Research and Public Health, 18(5), 2687–2612. https://doi.org/10.3390/ijerph18052687
  • Tomporowski, P. D., & Pendleton, D. M. (2018). Effects of the timing of acute exercise and movement complexity on young adults’ psychomotor learning. Journal of Sport and Exercise Psychology, 40(5), 240–248. https://doi.org/10.1123/jsep.2017-0289
  • Tsukamoto, H., Suga, T., Takenaka, S., Tanaka, D., Takeuchi, T., Hamaoka, T., Isaka, T., & Hashimoto, T. (2016). Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiology & Behavior, 155, 224–230. https://doi.org/10.1016/j.physbeh.2015.12.021
  • Wanner, P., Cheng, F. H., & Steib, S. (2020). Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neuroscience & Biobehavioral Reviews, 116(March), 365–381. https://doi.org/10.1016/j.neubiorev.2020.06.018
  • Wanner, P., Müller, T., Cristini, J., Pfeifer, K., & Steib, S. (2020). Exercise intensity does not modulate the effect of acute exercise on learning a complex whole-body task. Neuroscience, 426, 115–128. https://doi.org/10.1016/j.neuroscience.2019.11.027
  • Wollesen, B., Janssen, T. I., Müller, H., & Voelcker-Rehage, C. (2022). Effects of cognitive-motor dual task training on cognitive and physical performance in healthy children and adolescents: A scoping review. Acta Psychologica, 224, 103498. https://doi.org/10.1016/j.actpsy.2022.103498
  • Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37(1), 60–82. https://doi.org/10.1016/0749-5978(86)90044-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.