162
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Acute moderate-intensity aerobic exercise facilitates processing speed involving inhibitory control but not neuroelectric index of control process and cognitive integration

ORCID Icon, , &
Received 19 Nov 2023, Accepted 02 Jun 2024, Published online: 17 Jun 2024

References

  • Aly, M., & Kojima, H. (2020). Acute moderate-intensity exercise generally enhances neural resources related to perceptual and cognitive processes: A randomized controlled ERP study. Mental Health and Physical Activity, 19, 100363. https://doi.org/10.1016/j.mhpa.2020.100363
  • American College of Sports Medicine. (2018). ACSM’s guidelines for exercise testing and prescription. Lippincott Williams & Wilkins.
  • Aston-Jones, G., & Cohen, J. D. (2005). Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. Journal of Comparative Neurology, 493(1), 99–110. https://doi.org/10.1002/cne.20723
  • Bailey, B. W., Muir, A. M., Bartholomew, C. L., Christensen, W. F., Carbine, K. A., Marsh, H., LaCouture, H., McCutcheon, C., & Larson, M. J. (2021). The impact of exercise intensity on neurophysiological indices of food-related inhibitory control and cognitive control: A randomized crossover event-related potential (ERP) study. NeuroImage, 237, 118162. https://doi.org/10.1016/j.neuroimage.2021.118162
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
  • Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421. https://doi.org/10.1016/j.tics.2014.04.012
  • Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238. https://doi.org/10.1111/j.1469-8986.2011.01293.x
  • Chandler, M. C., McGowan, A. L., Brascamp, J. W., & Pontifex, M. B. (2021). Phasic activity of the locus-coeruleus is not a mediator of the relationship between fitness and inhibition in college-aged adults. International Journal of Psychophysiology, 165, 1–7. https://doi.org/10.1016/j.ijpsycho.2021.03.007
  • Chandler, M. C., McGowan, A. L., Burles, F., Mathewson, K. E., Scavuzzo, C. J., & Pontifex, M. B. (2020a). Aerobic fitness unrelated to acquisition of spatial relational memory in college-aged adults. Journal of Sport & Exercise Psychology, 42(6), 472–479. https://doi.org/10.1123/jsep.2020-0004
  • Chandler, M. C., McGowan, A. L., Ferguson, D. P., & Pontifex, M. B. (2020b). Carbohydrate mouth rinse has no effects on behavioral or neuroelectric indices of cognition. International Journal of Psychophysiology, 151, 49–58. https://doi.org/10.1016/j.ijpsycho.2020.02.012
  • Chandler, M. C., McGowan, A. L., Payne, B. R., Hampton Wray, A., & Pontifex, M. B. (2019). Aerobic fitness relates to differential attentional but not language-related cognitive processes. Brain and Language, 198, 104681. https://doi.org/10.1016/j.bandl.2019.104681
  • Chang, Y. K., Alderman, B. L., Chu, C. H., Wang, C. C., Song, T. F., & Chen, F. T. (2017). Acute exercise has a general facilitative effect on cognitive function: A combined ERP temporal dynamics and BDNF study. Psychophysiology, 54(2), 289–300. https://doi.org/10.1111/psyp.12784
  • Chang, Y. K., Chu, C. H., Wang, C. C., Song, T. F., & Wei, G. X. (2015). Effect of acute exercise and cardiovascular fitness on cognitive function: An event-related cortical desynchronization study. Psychophysiology, 52(3), 342–351. https://doi.org/10.1111/psyp.12364
  • Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG Technology, 25(2), 83–92. https://doi.org/10.1080/00029238.1985.11080163
  • Chu, C. H., Alderman, B. L., Wei, G. X., & Chang, Y. K. (2015). Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task. Journal of Sport and Health Science, 4(1), 73–81. https://doi.org/10.1016/j.jshs.2014.12.002
  • Ciria, L. F., Perakakis, P., Luque-Casado, A., & Sanabria, D. (2018). Physical exercise increases overall brain oscillatory activity but does not influence inhibitory control in young adults. NeuroImage, 181, 203–210. https://doi.org/10.1016/j.neuroimage.2018.07.009
  • Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763. https://doi.org/10.1152/jn.00479.2013
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
  • Duprez, J., Gulbinaite, R., & Cohen, M. X. (2020). Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control. NeuroImage, 207, 116340. https://doi.org/10.1016/j.neuroimage.2019.116340
  • Erickson, K. I., Hillman, C., Stillman, C. M., Ballard, R. M., Bloodgood, B., Conroy, D. E., Macko, R., Marquez, D. X., Petruzzello, S. J., & Powell, K. E. (2019). Physical activity, cognition, and brain outcomes: a review of the 2018 physical activity guidelines. Medicine & Science in Sports & Exercise, 51(6), 1242–1251. https://doi.org/10.1249/MSS.0000000000001936
  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
  • Griggs, M. A., Parr, B., Vandegrift, N. S., & Jelsone-Swain, L. (2023). The effect of acute exercise on attentional control and theta power in young adults. Experimental Brain Research, 241(10), 2509–2520. https://doi.org/10.1007/s00221-023-06660-3
  • Gwizdala, K. L., Ferguson, D. P., Kovan, J., Novak, V., & Pontifex, M. B. (2021). Placebo controlled phase II clinical trial: Safety and efficacy of combining intranasal insulin & acute exercise. Metabolic Brain Disease, 36(6), 1289–1303. https://doi.org/10.1007/s11011-021-00727-2
  • Hsieh, S. S., Chueh, T. Y., Morris, T. P., Kao, S. C., Westfall, D. R., Raine, L. B., Hopman, R. J., Pontifex, M. B., Castelli, D. M., Kramer, A. F., & Hillman, C. H. (2020). Greater childhood cardiorespiratory fitness is associated with better top-down cognitive control: A midfrontal theta oscillation study. Psychophysiology, 57(12), e13678. https://doi.org/10.1111/psyp.13678
  • Hsieh, S. S., Huang, C. J., Wu, C. T., Chang, Y. K., & Hung, T. M. (2018). Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. Journal of Clinical Medicine, 7(11), https://doi.org/10.3390/jcm7110391
  • Hsieh, S. S., Kao, S. C., Raine, L. B., Lloyd, K. M., Pontifex, M. B., & Hillman, C. H. (2023). Acute bouts of aerobic exercise do not modulate task-evoked midfrontal theta oscillations in school-age children. Journal of Cognitive Enhancement, 8(1-2), 9–20. https://doi.org/10.1007/s41465-023-00281-y
  • Hung, T. M., Tsai, C. L., Chen, F. T., Wang, C. C., & Chang, Y. K. (2013). The immediate and sustained effects of acute exercise on planning aspect of executive function. Psychology of Sport and Exercise, 14(5), 728–736. https://doi.org/10.1016/j.psychsport.2013.05.004
  • Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234. https://doi.org/10.1016/j.neuron.2015.11.028
  • Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Kida, T., Higashiura, T., & Kuroiwa, K. (2004). Changes in arousal level by differential exercise intensity. Clinical Neurophysiology, 115(12), 2693–2698. https://doi.org/10.1016/j.clinph.2004.06.016
  • Kao, S. C., Baumgartner, N., Noh, K., Wang, C. H., & Schmitt, S. (2023). Acute effects of intense interval versus aerobic exercise on children’s behavioral and neuroelectric measures of inhibitory control. Journal of Science and Medicine in Sport, 26(6), 316–321. https://doi.org/10.1016/j.jsams.2023.05.003
  • Kao, S. C., Chen, F. T., Moreau, D., Drollette, E. S., Amireault, S., Chu, C. H., & Chang, Y. K. (2022). Acute effects of exercise engagement on neurocognitive function: A systematic review and meta-analysis on P3 amplitude and latency. International Review of Sport and Exercise Psychology, https://doi.org/10.1080/1750984X.2022.2155488
  • Kao, S. C., Wang, C. H., & Hillman, C. H. (2020). Acute effects of aerobic exercise on response variability and neuroelectric indices during a serial n-back task. Brain and Cognition, 138, 105508. https://doi.org/10.1016/j.bandc.2019.105508
  • Kao, S. C., Wang, C. H., Kamijo, K., Khan, N., & Hillman, C. (2021). Acute effects of highly intense interval and moderate continuous exercise on the modulation of neural oscillation during working memory. International Journal of Psychophysiology, 160, 10–17. https://doi.org/10.1016/j.ijpsycho.2020.12.003
  • Kao, S. C., Westfall, D. R., Soneson, J., Gurd, B., & Hillman, C. H. (2017). Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology, 54(9), 1335–1345. https://doi.org/10.1111/psyp.12889
  • Keil, A., Bernat, E. M., Cohen, M. X., Ding, M., Fabiani, M., Gratton, G., Kappenman, E. S., Maris, E., Mathewson, K. E., Ward, R. T., & Weisz, N. (2022). Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series. Psychophysiology, 59(5), e14052. https://doi.org/10.1111/psyp.14052
  • Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1-3), 319–340. https://doi.org/10.1016/S0167-8760(97)00773-3
  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2-3), 169–195. https://doi.org/10.1016/S0165-0173(98)00056-3
  • Kolev, V., Yordanova, J., Schürmann, M., & Baţar, E. (1999). Event-related alpha oscillations in task processing. Clinical Neurophysiology, 110(10), 1784–1792. https://doi.org/10.1016/S1388-2457(99)00105-4
  • Krause, C. M., Èki, L. S., Koivisto, M., Saarela, C., Èggqvist, A. H., Laine, M., Èma, H., & Èinen, È. (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology, 111(11), 2071–2078. www.elsevier.com/locate/clinph.
  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
  • Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 863. https://doi.org/10.3389/fpsyg.2013.00863
  • Larson, M. J., Clayson, P. E., & Clawson, A. (2014). Making sense of all the conflict: A theoretical review and critique of conflict-related ERPs. International Journal of Psychophysiology, 93(3), 283–297. https://doi.org/10.1016/j.ijpsycho.2014.06.007
  • Lenth, R., Love, J., & Herve, M. (2017). emmeans: Estimated marginal means, aka least-squares means. https://github.com/rvlenth/emmeans.
  • Logan, N. E., Raine, L. B., Drollette, E. S., Castelli, D. M., Khan, N. A., Kramer, A. F., & Hillman, C. H. (2021). The differential relationship of an afterschool physical activity intervention on brain function and cognition in children with obesity and their normal weight peers. Pediatric Obesity, 16(2), e12708. https://doi.org/10.1111/ijpo.12708
  • Ludyga, S., Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: A meta-analysis. Psychophysiology, 53(11), 1611–1626. https://doi.org/10.1111/psyp.12736
  • Ludyga, S., Pühse, U., Lucchi, S., Marti, J., & Gerber, M. (2019). Immediate and sustained effects of intermittent exercise on inhibitory control and task-related heart rate variability in adolescents. Journal of Science and Medicine in Sport, 22(1), 96–100. https://doi.org/10.1016/j.jsams.2018.05.027
  • Makeig, S., Debener, S., Onton, J., & Delorme, A. (2004). Mining event-related brain dynamics. Trends in Cognitive Sciences, 8(5), 204–210. https://doi.org/10.1016/j.tics.2004.03.008
  • McGowan, A. L., Chandler, M. C., Brascamp, J. W., & Pontifex, M. B. (2019). Pupillometric indices of locus-coeruleus activation are not modulated following single bouts of exercise. International Journal of Psychophysiology, 140, 41–52. https://doi.org/10.1016/j.ijpsycho.2019.04.004
  • McLoughlin, G., Gyurkovics, M., Palmer, J., & Makeig, S. (2022). Midfrontal theta activity in psychiatric illness: An index of cognitive vulnerabilities across disorders. Biological Psychiatry, 91(2), 173–182. https://doi.org/10.1016/j.biopsych.2021.08.020
  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734
  • Moser, J. S., Schroder, H. S., Heeter, C., Moran, T. P., & Lee, Y.-H. (2011). Mind your errors. Psychological Science, 22(12), 1484–1489. https://doi.org/10.1177/0956797611419520
  • Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140–4154. https://doi.org/10.1002/hbm.22466
  • Nigbur, R., Cohen, M. X., Ridderinkhof, K. R., & Stürmer, B. (2012). Theta dynamics reveal domain-specific control over stimulus and response conflict. Journal of Cognitive Neuroscience, 24(5), 1264–1274. https://doi.org/10.1162/jocn_a_00128
  • Peirce, J. W. (2009). Generating stimuli for neuroscience using PsychoPy. Frontiers in Neuroinformatics, 2, 10. https://doi.org/10.3389/neuro.11.010.2008
  • Pfurtscheller, G., & Lopes Da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857. https://doi.org/10.1016/S1388-2457(99)00141-8
  • Pontifex, M. B. (2022). Rmimic. https://github.com/mattpontifex/Rmimic.
  • Pontifex, M. B., Gwizdala, K. L., Parks, A. C., Billinger, M., & Brunner, C. (2017a). Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts. Psychophysiology, 54(3), 386–398. https://doi.org/10.1111/psyp.12804
  • Pontifex, M. B., McGowan, A. L., Chandler, M. C., Gwizdala, K. L., Parks, A. C., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1–22. https://doi.org/10.1016/j.psychsport.2018.08.015
  • Pontifex, M. B., Miskovic, V., & Laszlo, S. (2017b). Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components. Psychophysiology, 54(5), 780–791. https://doi.org/10.1111/psyp.12827
  • Pontifex, M. B., Parks, A. C., Henning, D. A., & Kamijo, K. (2015). Single bouts of exercise selectively sustain attentional processes. Psychophysiology, 52(5), 618–625. https://doi.org/10.1111/psyp.12395
  • Raine, L. B., Kao, S.-C., Pindus, D., Westfall, D. R., Shigeta, T. T., Logan, N., Cadenas-Sanchez, C., Li, J., Drollette, E. S., Pontifex, M. B., Khan, N. A., Kramer, A. F., & Hillman, C. H. (2018). A large-scale reanalysis of childhood fitness and inhibitory control. Journal of Cognitive Enhancement, 2(2), 170–192. https://doi.org/10.1007/s41465-018-0070-7
  • R Core Team. (2019). R: a language and environment for statistical computing. http://www.R-project.org/.
  • Rizzo, M., Petrini, L., Del Percio, C., Lopez, S., Arendt-Nielsen, L., & Babiloni, C. (2022). Mirror visual feedback during unilateral finger movements is related to the desynchronization of cortical electroencephalographic somatomotor alpha rhythms. Psychophysiology, 59(12), e14116. https://doi.org/10.1111/psyp.14116
  • Robergs, R. A., & Landwehr, R. (2002). The surprising history of the" HRmax= 220-age" equation. Journal of Exercise Physiology Online, 5(2), 1–10.
  • Shigeta, T. T., Morris, T. P., Henry, D. H., Kucyi, A., Bex, P., Kramer, A. F., & Hillman, C. H. (2021). Acute exercise effects on inhibitory control and the pupillary response in young adults. International Journal of Psychophysiology, 170, 218–228. https://doi.org/10.1016/j.ijpsycho.2021.08.006
  • Shvartz, E., & Reibold, R. C. (1990). Aerobic fitness norms for males and females aged 6 to 75 years: a review. Aviation, Space, and Environmental Medicine, 61(1), 3–11.
  • Themanson, J. R., & Hillman, C. H. (2006). Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 141(2), 757–767. https://doi.org/10.1016/j.neuroscience.2006.04.004
  • Tsai, C. L., Chen, F. C., Pan, C. Y., Wang, C. H., Huang, T. H., & Chen, T. C. (2014). Impact of acute aerobic exercise and cardiorespiratory fitness on visuospatial attention performance and serum BDNF levels. Psychoneuroendocrinology, 41, 121–131. https://doi.org/10.1016/j.psyneuen.2013.12.014
  • Tsai, C. L., Pan, C. Y., Chen, F. C., Wang, C. H., & Chou, F. Y. (2016). Effects of acute aerobic exercise on a task-switching protocol and brain-derived neurotrophic factor concentrations in young adults with different levels of cardiorespiratory fitness. Experimental Physiology, 101(7), 836–850. https://doi.org/10.1113/EP085682
  • Utter, A. C., Robertson, R. J., Nieman, D. C., & Kang, J. (2002). Children’s OMNI Scale of Perceived Exertion: Walking/running evaluation. Medicine & Science in Sports & Exercise, 34(1), 139–144. https://doi.org/10.1097/00005768-200201000-00021
  • van Noordt, S., Heffer, T., & Willoughby, T. (2022). A developmental examination of medial frontal theta dynamics and inhibitory control. NeuroImage, 246, 118765. https://doi.org/10.1016/j.neuroimage.2021.118765
  • Wang, G. Y., & Griskova-Bulanova, I. (2018). Electrophysiological activity is associated with vulnerability of Internet addiction in non-clinical population. Addictive Behaviors, 84, 33–39. https://doi.org/10.1016/j.addbeh.2018.03.025
  • Weng, T. B., Pierce, G. L., Darling, W. G., & Voss, M. W. (2015). Differential effects of acute exercise on distinct aspects of executive function. Medicine & Science in Sports & Exercise, 47(7), 1460–1469. https://doi.org/10.1249/MSS.0000000000000542
  • Yu, C. L., Hsieh, S. S., Chueh, T. Y., Huang, C. J., Hillman, C. H., & Hung, T. M. (2020). The effects of acute aerobic exercise on inhibitory control and resting state heart rate variability in children with ADHD. Scientific Reports, 10(1), 19958. https://doi.org/10.1038/s41598-020-76859-9