2,440
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Spectral, structural and energetic study of acephate, glyphosate, monocrotophos and phorate: an experimental and computational approach

, , , , , , , , & show all
Pages 69-78 | Received 17 Apr 2017, Accepted 21 Jan 2018, Published online: 26 Mar 2018

References

  • Terry AV, Jr. Functional consequences of repeated organophosphate exposure: potential non-cholinergic mechanisms. Pharmacol Therap. 2012;134:355–365. doi: 10.1016/j.pharmthera.2012.03.001
  • Kumar V, Upadhyay N, Wasit AB, et al. Spectroscopic methods for the detection of organophosphate pesticides – a preview. Curr World Environ. 2013;8:313–318. doi: 10.12944/CWE.8.2.19
  • Platte F, Michael Heise H. Substance identification based on transmission THz spectra using library search. J Mol Str. 2014;1073:3–9. doi: 10.1016/j.molstruc.2013.12.065
  • Kumar V, Upadhyay N, Singh S, et al. Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ. 2013;8:469–472. doi: 10.12944/CWE.8.3.17
  • Gholivand K, Valmoozi AAE, Mahzouni HR, et al. Molecular docking and QSAR studies: noncovalent interaction between acephate analogous and the receptor site of human acetylcholinesterase. J Agric Food Chem. 2013;61:6776–6785. doi: 10.1021/jf401092h
  • Long DA. The polarizability and hiperpolarizability tensors. In: Kiefer W, Long DA, editors. Non-linear Raman spectroscopy and its chemical applications. Dordrecht: Reidel; 1982. p. 99–112.
  • Ostojic BD, Stankovic B, Ðor-devic DS. Theoretical study of the molecular properties of dimethyl anthracenes as properties for the prediction of their biodegradation and mutagenicity. Chemosphere. 2014;111:144–150. doi: 10.1016/j.chemosphere.2014.03.067
  • Ali MMN, Kaliannan P, Venuvanalingam P. Ab initio computational modeling of glyphosate analogs: conformational perspective. Str Chem. 2005;16:491–506. doi: 10.1007/s10224-005-4615-8
  • Schmidt MW, Baldridge KK, Boatz JA. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112
  • Young DC. Computational chemistry – a practical guide for applying techniques to real-world problems (electronics). New York (NY): Wiley; 2001.
  • Esperdy K, Shillady DD. Simulated infrared spectra of Ho(III) and Gd(III) chlorides and carboxylate complexes using effective core potentials in GAMESS. J Chem Inf Comput Sci. 2007;41:1547–1552. doi: 10.1021/ci010057k
  • Kumar V, Upadhyay N. Computational chemistry: a preview of density functional theory. Wilkes100-ICCS. Jalandhar: Elsevier; 2013. p. 504–510.
  • Karabacak M, Kose E, Atac A, et al. Experimental (FT-IR, FT-Raman, UV–Vis, 1H and 13C NMR) and computational (density functional theory) studies on 3-bromophenylboronic acid. J Mol Str. 2014;1076:358–372. doi: 10.1016/j.molstruc.2014.07.058
  • Pathak SK, Haress NG, El-Emam AA, et al. Structural, spectroscopic (FT-IR, FT-Raman and UV) studies, HOMO–LUMO, NBO, NLO analysis and reactivity descriptors of 2,3 difluoroaniline and 2,4-difluoroaniline. J Mol Str. 2014;1074:457–466. doi: 10.1016/j.molstruc.2014.06.036
  • Mastrantonio GE, Erben MF, Della Védova CO. On the conformational behavior of O,O-dimethyl phosphamidothioate (S=P(OCH3)2NH2). J Mol Str. 2005;3:107–113. doi: 10.1016/j.molstruc.2004.09.014
  • Prasad R, Upadhyay N, Kumar V. Simultaneous determination of seven carbamate pesticide residues in gram, wheat, lentil, soybean, fenugreek leaves and apple matrices. Microchem J. 2013;111:91–96. doi: 10.1016/j.microc.2012.12.014
  • Kaliannan P, Mohamed Naseer Ali M, Seethalakshmi T, et al. Electronic structure and conformation of glyphosate: an ab initio MO study. J Mol Str. 2002;618:117–125. doi: 10.1016/S0166-1280(02)00467-0
  • Zhang Y, Peng XH, Chen Y, et al. A first principle study of terahertz (THz) spectra of acephate. Chem Phys Lett. 2008;452:59–66. doi: 10.1016/j.cplett.2007.11.102
  • Rifai A, Bourcier S, Jaber F, et al. Structures and dissociation mechanisms of protonated and electron ionized methamidophos. Int J Mass Spectro. 2013;340:7–15. doi: 10.1016/j.ijms.2013.02.003
  • Grube A, Donaldson D, Kiely T, et al. Pesticide industry sales and usage: 2006 and 2007 market estimates. Washington (DC): United States Environmental Protection Agency; 2011; http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf.
  • Kannappan R, Tooke DM, Spek AL, et al. An alternating chain of spider-like tris(peptides) stabilized by stacking and by N–H⋯N and N–H⋯O=C hydrogen bonding. J Mol Str. 2005;751:55–59. doi: 10.1016/j.molstruc.2005.04.043
  • Zhou Y, Zheng YZ, Sun HY, et al. Hydrogen bonding interactions in ethanol and acetonitrile binary system: a near and mid-infrared spectroscopic study. J Mol Str. 2014;1069:251–257. doi: 10.1016/j.molstruc.2014.02.027
  • Rawat P, Singh RN. Evaluation of molecular assembly, spectroscopic interpretation, intra-/inter molecular hydrogen bonding and chemical reactivity of two pyrrole precursors. J Mol Str. 2014;1075:462–470. doi: 10.1016/j.molstruc.2014.07.012
  • Afzali R, Vakili M, Nekoei A-R, et al. Intramolecular hydrogen bonding and vibrational assignment of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione. J Mol Str. 2014;1076:262–271. doi: 10.1016/j.molstruc.2014.07.059
  • Singh N, Khan IM, Ahmad A, et al. Preparation, spectral investigation and spectrophotometric studies of proton transfer complex of 2,2′-bipyridine with 3,5-dinitrobenzoic acid in various polar solvents. J Mol Str. 2014;1066:74–85. doi: 10.1016/j.molstruc.2014.02.017
  • Singh N, Ahmad A. Synthesis and spectrophotometric studies of charge transfer complexes of p-nitroaniline with benzoic acid in different polar solvents. J Mol Str. 2014;1074:408–415. doi: 10.1016/j.molstruc.2014.05.076
  • Kumar V, Upadhyay N, Kumar V, et al. Interactions of atrazine with transition metal ions in aqueous media: experimental and computational approach. 3Biotech. 2015;5:791–798.
  • Das AC, Chakravarty A, Sen G, et al. A comparative study on the dissipation and microbial metabolism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal. Chemosphere. 2005;58:579–584. doi: 10.1016/j.chemosphere.2004.07.007
  • Kumar V, Upadhyay N, Kumar V, et al. A review on sample preparation and chromatographic determination of acephate and methamidophos in different samples. Arab J Chem. 2015;8:624–631. doi: 10.1016/j.arabjc.2014.12.007
  • Kumar V, Upadhyay N, Kumar V, et al. Environmental exposure and health risks of the insecticide monocrotophos – a review. J Bio Env Sci. 2014;5:111–120.
  • Ku Y, Lin HS, Wang W, et al. Decomposition of phorate in aqueous solution by ozonation. J Environ Sci Health B. 2009;42:143–149. doi: 10.1080/03601230601123268
  • Kumar V, Manhas A. Designing syntheses characterization computational study and biological activities of silver-phenothiazine metal complex. J Mol Str. 2015;1099:135–140. doi: 10.1016/j.molstruc.2015.06.055
  • Singh RN, Rawat P, Sahu S. A mixed experimental and DFT study on ethyl 4-[3-(4-dimethylamino-phenyl)-acryloyl]-3,5-dimethyl-1H-pyrrole-2-carboxylate. J Mol Str. 2014;1066:99–107. doi: 10.1016/j.molstruc.2014.02.041
  • El-Sheshtawy HS, Baker AMA. Synthesis, structural, theoretical studies and biological activities of 3-(arylamino)-2-phenyl-1H-inden-1-one derivative. J Mol Str. 2014;1067:225–232. doi: 10.1016/j.molstruc.2014.03.042
  • Mayer H, Kuckuk R, Heimlich F, et al. Spectroscopic (FT-IR, FT-Raman and NMR) and computational studies on 3-methoxyaniline. J Mol Str. 2014;1057:176–188.
  • Kumar V, Chawla M, Cavallo L, et al. Complexation of trichlorosalicylic acid with alkaline and first row transition metals as a switch for their antibacterial activity. Inorganica Chim Acta. 2018;469:379–386. doi: 10.1016/j.ica.2017.08.064
  • Singh RN, Rawat P, Sahu S. Synthesis, characterization and computational study on ethyl 4-(3-Furan-2yl-acryloyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate. J Mol Str. 2014;1076:437–445. doi: 10.1016/j.molstruc.2014.07.074
  • Sudha S, Sundaraganesan N, Vanchinathan K, et al. Spectroscopic (FTIR, FT-Raman, NMR and UV) and molecular structure investigations of 1,5-diphenylpenta-1,4-dien-3-one: a combined experimental and theoretical study. J Mol Str. 2012;1030:191–203. doi: 10.1016/j.molstruc.2012.04.030
  • Aihara J. Reduced HOMO−LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J Phys Chem A. 1999;103:7487–7495. doi: 10.1021/jp990092i
  • Herschlag D, Jencks WP. Decreasing reactivity with increasing nucleophile basicity. The effect of solvation on β-nuc. for phosphoryl transfer to amines. J Am Chem Soc. 1986;108:479–483. doi: 10.1021/ja00285a010
  • Kim K, Tsay OG, Atwood DA, et al. Destruction and detection of chemical warfare agents. Chem Rev. 2011;111:5345–5403. doi: 10.1021/cr100193y
  • Lo CC. Effect of pesticides on soil microbial community. J Environ Sci Health Part B. 2010;45:348–359. doi: 10.1080/03601231003799804
  • Lancaster SH, Hollister EB, Senseman SA, et al. Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Manag Sci. 2010;66:59–64. doi: 10.1002/ps.1831
  • Abdel-Mallek AY, Abdel-Kader MIA, Shonkeir AMA. Effect of glyphosate on fungal population, respiration and the decay of some organic matters in Egyptian soil. Microbiol Res. 1994;149:69–73. doi: 10.1016/S0944-5013(11)80139-4
  • Gonzalez-Lopez J, Martinez-Toledo MV, Rodelas B, et al. Studies on the effects of the insecticides phorate and malathion on soil microorganisms. Environ Toxicol Chem. 1993;12:1209–1214. doi: 10.1002/etc.5620120709
  • Singh BK. Organophosphorus-degrading bacteria: ecology and industrial applications. Nature Rev. 2009;7:156–164.
  • Singh S, Singh N, Kumar V, et al. Toxicity monitoring and biodegradation of the fungicide carbendazim. Environ Chem Letters. 2016;14:317–329. doi: 10.1007/s10311-016-0566-2
  • Singh S, Kumar V, Chauhan A, et al. Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett. 2017;16:1–27.
  • Kumar V, Singh S, Singh J, et al. Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol. 2015;94:807–815. doi: 10.1007/s00128-015-1523-7
  • Majid A, Adam A, Refat MS, et al. Spectral, thermal, XRD and SEM studies of charge-transfer complexation of hexamethylenediamine and three types of acceptors: π-, σ- and vacant orbital acceptors that include quinol, picric acid, bromine, iodine, SnCl4 and ZnCl2 acceptors. J Mol Str. 2013;1051:144–163. doi: 10.1016/j.molstruc.2013.08.006
  • Sanches EA, Soares JC, Mafud AC, et al. Structural characterization of chloride salt of conducting polyaniline obtained by XRD, SAXD, SAXS and SEM. J Mol Str. 2013;1036:121–126. doi: 10.1016/j.molstruc.2012.09.084
  • Krawczykt H, Bartczak TJ. New crystalline polymorphic form of glyphosate: synthesis, crystal and molecular structures of n-(phosphon-o-methyl) glycine. Phosphorus Sulfur Silicon. 1993;82:117–125. doi: 10.1080/10426509308047415
  • Qian K, Tang T, Shi T, et al. Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride. Anal Chimica Acta. 2009;635:222–226. doi: 10.1016/j.aca.2009.01.022
  • Lundgren LN. A new method for the determination of glyphosate and (Aminomethy1)phosphonic acid residues in soils. J Agric Food Chem. 1986;34:3232–3240. doi: 10.1021/jf00069a041
  • Rastegarzadeh S, Pourreza N, Larki A. Dispersive liquid-liquid microextraction of thiram followed by microvolume UV-vis spectrophotometric determination. Spectrochim Acta A Mol Biomol Spectrosc. 2013;114:46–50. doi: 10.1016/j.saa.2013.05.020
  • Schnurer Y, Persson P, Nilsson M, et al. Effects of surface sorption on microbial degradation of glyphosate. Environ Sci Technol. 2006;40:4145–4150. doi: 10.1021/es0523744
  • Piccolo A, Celano G. Hydrogen bonding interactions between the herbicide glyphosate and water-soluble humic sub-stances. Environ Toxicol Chem. 1984;13:1737–1741. doi: 10.1002/etc.5620131104
  • Rani R, Juwarkar A. Adsorption of phorate, an organophosphorus pesticide, on vertisol. Arch Environ Contam Toxicol. 2010;58:927–934. doi: 10.1007/s00244-009-9424-6
  • Mazzei P, Piccolo A. Quantitative evaluation of noncovalent interactions between glyphosate and dissolved humic substances by NMR spectroscopy. Environ Sci Technol. 2012;46:5939–5946. doi: 10.1021/es300265a
  • Kumar V, Kumar V, Kaur S, et al. Unexpected formation of N-phenyl-thiophosphorohydrazidic acid O,S-dimethyl ester from acephate: chemical, biotechnical and computational study. 3 Biotech. 2016;6:1–11. doi: 10.1007/s13205-015-0313-6
  • Singh S, Kumar V, Upadhyay N, et al. Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech. 2017;7:262. doi:10.1007/s13205-017-0900-9.
  • Kaur S, Kumar V, Chawla M, et al. Pesticides curbing soil fertility: effect of complexation of free metal ions. Front Chem. 2017;5:1–9. doi: 10.3389/fchem.2017.00043
  • Kumar V, Singh S, Singh R, et al. Design, synthesis, and characterization of 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino)acetate as a herbicidal and biological active agent. J Chem Biol. 2017;11:179–190. doi: 10.1007/s12154-017-0174-z
  • Qian K, Tang T, Shi T, et al. Solid-phase extraction and residue determination of glyphosate in apple by ion-pairing reverse-phase liquid chromatography with pre-column derivatization. J Sep Sci. 2009;32:2394–2400. doi: 10.1002/jssc.200900118