1,823
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Biological and structural properties’ interpretation on antitumour drug 3-(2-aminoethyl) indole (tryptamine) using molecular spectroscopy and computational tools

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 231-247 | Received 18 Jul 2018, Accepted 11 Dec 2018, Published online: 25 Dec 2018

References

  • Lee J-H, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426–444. doi: 10.1111/j.1574-6976.2009.00204.x
  • Parke DV. The biochemistry of foreign compounds. Oxford: Pergamon Press; 1968, p. 45–52.
  • Nelson L, David M, Cox M. Principles of biochemistry. 4th ed. New York: W. H. Freeman; 2005.
  • Jones RS. Tryptamine: a neuromodulator or neurotransmitter in mammalian brain? Prog Neurobiol. 1982;19(1–2):117–139. doi: 10.1016/0301-0082(82)90023-5
  • Pauwels PJ, John GW. Clin Neuropharmacol. 1999;22:123–132.
  • Adams D, Enardeau AB, Bickerdike MJ, et al. 5-HT2C receptor Agonists for the treatment of obesity. biological and chemical Adventures. Chim. Int. J. Chem. 2004;58:613–620. doi: 10.2533/000942904777677506
  • Reyes F, Martin R, Fern R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft Coral Eunicellagranulata. J Nat Prod 2006;69:668–670. doi: 10.1021/np050382s
  • Beck B, Hess S, Domling A. One-pot synthesis and biological evaluation of aspergillamides and analogues. Bioorg Med Chem Lett 2000;10:1701–1705. doi: 10.1016/S0960-894X(00)00305-X
  • Adla SK, Sasse F, Kelter G, et al. Doubly prenylated tryptamines: cytotoxicity, antimicrobial activity and cyclisation to the marine natural product flustramine A. Org Biomol Chem 2013;11:6119. doi: 10.1039/c3ob40896e
  • Aarthi R, Ramalingam S, Periandy S. Acta Sci Pharma Sci. 2018;2(1):13–23.
  • Manzoorali M, George G, Ramalingam S, et al. Spectroscopic investigation and chemical properties analysis on anticancer compound; α,α,ά,ά-Tetrabromo-p-Xylene with computational analysis. J Mol Struct. 2016;1106:37–52. doi: 10.1016/j.molstruc.2015.10.078
  • Susithra G, Ramalingam S, Periandy S, et al. J Pharmacol Med Chem. 2018;2(1):1–17.
  • Madanagopal A, Periandy S, Gayathri P, et al. Molecular structure activity on pharmaceutical applications of Phenacetin using spectroscopic investigation. J Mol Struct. 2017;1127:611–625. doi: 10.1016/j.molstruc.2016.08.028
  • Karthikeyan N, Joseph Prince J, Ramalingam S, et al. Electronic [UV–visible] and vibrational [FT-IR, FT-Raman] investigation and NMR–mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations. Spectrochim Acta, Part A. 2015;139:229–242. doi: 10.1016/j.saa.2014.11.112
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46(1-3):3–26. doi: 10.1016/S0169-409X(00)00129-0
  • Leo A, Hansch C, Elkins D. Partition coefficients and their uses. Chem Rev. 1971;71(6):525–616. doi: 10.1021/cr60274a001
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–553. doi: 10.1602/neurorx.2.4.541
  • Hitchcock SA, Pennington LD. Structure−brain exposure relationships. J Med Chem 2006;49(26):7559–7583. doi: 10.1021/jm060642i
  • Lombardo F, Gifford E, Shalaeva MY. In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem. 2003;3:861–875. doi: 10.2174/1389557033487629
  • Taylor NR, Smith R. The World Wide Web as a graphical user interface to program macros for molecular graphics, molecular modeling, and structure-based drug design. J Mol Graph. 1996;14:291–296. doi: 10.1016/S0263-7855(96)00077-X
  • Mao F, Ni W, Xu X, et al. Molecules. 2016;21(75):1–18.
  • Burris TP, Busby SA, Griffin PR. Targeting orphan nuclear receptors for treatment of metabolic diseases and autoimmunity. Chem Biol. 2012;19:51–59. doi: 10.1016/j.chembiol.2011.12.011
  • Oda K. New families of carboxyl peptidases: serine-carboxyl peptidases and glutamic peptidases. J Biochem. 2012;151(1):13–25. doi: 10.1093/jb/mvr129
  • Millich F, Becker EI. Synthesis and infrared spectra of some indole compounds1. J Org Chem 1958;23:1096–1102. doi: 10.1021/jo01102a003
  • Katritzky AR, Ambler AP. Physical methods in heterocyclic chemistry. New York: Academic Press; 1963, p. 161.
  • George Socrates. Infrared and Raman characteristic group frequencies (tables and charts). London- New York: John Wiley & Sons, Ltd; 2001.
  • Johnson P, George G, Ramalingam S, et al. J Mol Pharm Org Process Res. 2018;6(1):1–17.
  • Pouchert CJ. The Aldrich library of FTIR spectra. New Zealand: The Aldrich Co.; 1985.
  • Xue Y, Xu D, Xie D, et al. Density functional theory studies on tautomeric stability and infrared spectra of 2-chloroadenine. Spectrochim Acta A. 2000;56:1929–1938. doi: 10.1016/S1386-1425(00)00252-3
  • Xue Y, Xie D, Yan G. Density functional theory studies on molecular structure and IR spectra of 9-methyladenine: a scaled quantum mechanical force field approach. Int J Quantum Chem 2000;76:686–699. doi: 10.1002/(SICI)1097-461X(2000)76:6<686::AID-QUA2>3.0.CO;2-B
  • Krishna kumar V, John Xavier R. Indian J Pure Appl Phys. 2003;41:95–99.
  • Sathyanarayana DN. Vibrational spectroscopy theory and applications. 2nd ed. New Delhi: New AgeInternational (P) limited publisher; 2004.
  • Kalsi PS. Spectroscopy of organic compounds. New Delhi: Wiley Eastern Limited; 1993, 117–118.
  • Roeges NGP. A guide to the complete interpretation of the infrared spectra of organic structures. New York: Wiley; 1994.
  • Green JHS, Harrison DJ, Kynoston W. Vibrational spectra of benzene derivatives—XII 1,2,4-trisubstituted compounds. Spectrochim Acta. 1971;27A:807–815. doi: 10.1016/0584-8539(71)80159-9
  • Shanmugam R, Sathayanarayana D. Spectrochimica Acta A. 1984;40–49.
  • Kameytani T, Kajiwara M, Takahashi T, et al. Relationship between reactivity and 13C chemical shifts of benzocyclobutenes. Tetrahedron. 1975;31:949–951. doi: 10.1016/0040-4020(75)80106-2
  • Johnson P, George G, Ramalingam S, et al. J Pharm Pharm Res. 2018;1-10001:1–12.
  • Fleming I. Frontier orbitals and Organic chemical reactions. London- New York: John Wiley & Sons; 1976.
  • Madanagopal A, Periandy S, Gayathri P, et al. Spectroscopic and computational investigation of the structure and pharmacological activity of 1-benzylimidazole. J Taibah Univ Sci. 2017;11:975–996. doi: 10.1016/j.jtusci.2017.02.006
  • Manzoor Ali M, George G, Ramalingam S, et al. Vibrational [FT-IR, FT-Raman] analysis, NMR and mass – spectroscopic investigation on 3,6-dimethylphenanthrene using computational calculation. J Mol Struct. 2015;1099:463–481. doi: 10.1016/j.molstruc.2015.05.066
  • Bentley J. Determination of electronic energies from experimental electron densities. J Chem Phys 1979;70:159–164. doi: 10.1063/1.437216
  • Politzer P, Laurence PR, Jayasuriya K. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect. 1985;61:191–202. doi: 10.1289/ehp.8561191
  • Rauk A. Orbital interaction theory of Organic chemistry. 2nd ed. New York: John Wiley & Sons; 2001, p. 34.
  • Shalini A, Tandon H, Chakraborty T. J Bioequiv Availab. 2017;9(6):536–546.
  • Wang J, Xie XQ, Hou T, et al. Fast Approaches for molecular polarizability calculations. Fast J. Phys. Chem. A. 2007;111:4443–4448. doi: 10.1021/jp068423w
  • Moorthy N, Jobe Prabakar PC, Ramalingam S, et al. J Theor Comput Sci. 2015;2(4):1–13.