1,592
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Application of a Legendre collocation method to the space–time variable fractional-order advection–dispersion equation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 324-330 | Received 02 Nov 2018, Accepted 04 Jan 2019, Published online: 07 Feb 2019

References

  • Milici C, Drăgănescu G, Machado JAT. 2019. Introduction to fractional differential equations. Springer.
  • Zaky MA. A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 2018;91:2667–2681. doi: 10.1007/s11071-017-4038-4
  • Bhrawy AH, Zaky MA. An improved collocation method for multi-dimensional spacetime variable-order fractional Schrödinger equations. Appl. Numer. Math. 2017;111:197–218. doi: 10.1016/j.apnum.2016.09.009
  • Machado JAT, Moghaddam BP. A robust algorithm for nonlinear variable-order fractional control systems with delay. Int. J. Nonlinear Sci. Numer. Simul. 2018;19:231–238. doi: 10.1515/ijnsns-2016-0094
  • Zaky MA. An improved tau method for the multi-dimensional fractional Rayleigh–Stokes problem for a heated generalized second grade fluid. Comput. Math. Appl. 2018;75:2243–2258. doi: 10.1016/j.camwa.2017.12.004
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. North-Holl. Math. Stud. 2006;204.
  • Bhrawy AH, Zaky MA. Numerical simulation of multi-dimensional distributed-order generalized Schrödinger equations. Nonlinear Dyn. 2018;89:1415–1432. doi: 10.1007/s11071-017-3525-y
  • Zaky MA, Machado JAT. On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 2017;52:177–189. doi: 10.1016/j.cnsns.2017.04.026
  • Moghaddam BP, Machado JAT, Babaei A. A computationally efficient method for tempered fractional differential equations with application. Comp. Appl. Math. 2018;37:3657–3671. doi: 10.1007/s40314-017-0522-1
  • Sohail A, Maqbool K, Ellahi R. Stability analysis for fractional order partial differential equations by means of space spectral time Adams Bashforth Moulton method. Numer. Methods Partial Differ. Equ.2017;34(1):19–29. doi: 10.1002/num.22171
  • Bhrawy AH, Zaky MA. A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations. J. Compt. Phys. 2015;281:876–895. doi: 10.1016/j.jcp.2014.10.060
  • Rahmatullah RE, Mohyud-Din ST, Khan U. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method. Results Phys. 2018;8:114–120. doi: 10.1016/j.rinp.2017.11.023
  • Khan U, Ellahi R, Khan R, et al. Extracting new solitary wave solutions of Benny Luke equation and Phi-4 equation of fractional order by using (G′/G)-expansion method. Opt. Quantum. Electron. 2017;49:362. doi: 10.1007/s11082-017-1191-4
  • Bhrawy AH, Zaky MA. Shifted fractional-order Jacobi orthogonal functions: Application to a system of fractional differential equations. Appl. Math. Model. 2016;40:832–845. doi: 10.1016/j.apm.2015.06.012
  • Moghaddam BP, Aghili A. A numerical method for solving linear non-homogenous fractional ordinary differential equation.  Appl. Math. Inf. Sc. 2012;6:441–445.
  • Bhrawy AH, Zaky MA, Van Gorder RA. A space–time Legendre spectral tau method for the two-sided space–time Caputo fractional diffusion-wave equation. Numer. Algor. 2016;71:151–180. doi: 10.1007/s11075-015-9990-9
  • Zaky MA, Doha EH, Machado JAT. A spectral framework for fractional variational problems based on fractional Jacobi functions. Appl. Numer. Math. 2018;132:51–72. doi: 10.1016/j.apnum.2018.05.009
  • Bhrawy AH, Zaky MA, Machado JT. Efficient Legendre spectral tau algorithm for solving two-sided space–time Caputo fractional advection–dispersion equation. J. Vib. Control. 2016;22:2053–2068. doi: 10.1177/1077546314566835
  • Bhrawy AH, Zaky MA, Baleanu D, et al. A novel spectral approximation for the two-dimensional fractional sub-diffusion problems. Rom. J. Phys. 2015;60:344–359.
  • Bhrawy AH, Zaky MA, Machado JAT. Numerical solution of the two-sided space-time fractional telegraph equation via Chebyshev tau approximation. J. Optimiz. Theory App. 2017;174:321–341. doi: 10.1007/s10957-016-0863-8
  • Bhrawy AH, Zaky MA. A fractional-order Jacobi tau method for a class of time-fractional PDEs with variable coefficients. Math. Method. Appl. Sci. 2016;39:1765-–1779. doi: 10.1002/mma.3600
  • Zaky MA. A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations. Comput. Appl. Math.
  • Samko SG, Ross B. Integration and differentiation to a variable fractional order. Integr. Transf. Spec. F. 1993;1:277–300. doi: 10.1080/10652469308819027
  • Samko SG. Fractional integration and differentiation of variable order. Anal. Math. 1995;21:213–236. doi: 10.1007/BF01911126
  • Samko S. Fractional integration and differentiation of variable order: an overview. Nonlinear Dynam. 2013;71:653–662. doi: 10.1007/s11071-012-0485-0
  • Zaky MA, Ameen IG, Abdelkawy MA. A new operational matrix based on Jacobi wavelets for a class of variable-order fractional differential equations. Proc. Roman. Academy 2017;18:315–322.
  • Diaz G, Coimbra CFM. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam. 2009;56:145–157. doi: 10.1007/s11071-008-9385-8
  • Zaky MA, Doha EH, Taha TM, et al. New recursive approximations for variable-order fractional operators with applications. Math. Model. Anal. 2018;23:227–239. doi: 10.3846/mma.2018.015
  • Lorenzo CF, Hartley TT. Variable order and distributed order fractional operators. Nonlinear Dynam. 2002;29:57–98. doi: 10.1023/A:1016586905654
  • Lin R, Liu F, Anh V, et al. Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 2009;212:435–445.
  • Sun HG, Chen W, Chen YQ. Variable order fractional differential operators in anomalous diffusion modeling. Physica A Stat. Mech. Appl. 2009;388:4586–4592. doi: 10.1016/j.physa.2009.07.024
  • Bhrawy AH, Zaky MA. Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrödinger equations. Comput. Math. Appl. 2017;73:1100–1117. doi: 10.1016/j.camwa.2016.11.019
  • Atangana A, Cloot AH. Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ. 2013;2013:1–10. doi: 10.1186/1687-1847-2013-1
  • Bhrawy AH, Zaky MA. Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynam. 2015;80:101–116. doi: 10.1007/s11071-014-1854-7
  • Zhang H, Liu F, Zhuang P, et al. Numerical analysis of a new space–time variable fractional order advection–dispersion equation. Appl. Math. Comput. 2014;242:541–550.
  • Zaky MA, Baleanu D, Alzaidy JF, et al. Operational matrix approach for solving the variable-order nonlinear Galilei invariant advection–diffusion equation. Adv. Differ. Equ. 2018;2018:102. doi: 10.1186/s13662-018-1561-7
  • Abdelkawy MA, Zaky MA, Bhrawy AH, et al. Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model. Rom. Rep. Phys. 2015;67:773–791.
  • Bhrawy AH, Zaky MA. Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 2016;85:1815–1823. doi: 10.1007/s11071-016-2797-y
  • Moghaddam BP, Mostaghim ZS. A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 2013;7(3):120–127. doi: 10.1016/j.jtusci.2013.07.002
  • Ghomanjani F. A new approach for solving fractional differential algebraic equations. J. Taibah Univ. Sci. 2017;11(6):1158–1164. doi: 10.1016/j.jtusci.2017.03.006
  • Guezane-Lakoud A, Ramdane S. Existence of solutions for a system of mixed fractional differential equations. J. Taibah Univ. Sci. 2018;12(4):421–426. doi: 10.1080/16583655.2018.1477414
  • Yaslan HC, Girgin A. New exact solutions for the conformable space–time fractional KdV, CDG,(2+1)-dimensional CBS and (2+1)-dimensional AKNS equations. J. Taibah Univ. Sci. 2018;13(1):1–8. doi: 10.1080/16583655.2018.1515303
  • Sabi'u J, Jibril A, Gadu AM. New exact solution for the (3+1) conformable space–time fractional modified Kortewegde–Vries equations via Sine–Cosine Method. J. Taibah Univ. Sci. 2018;13(1):91–95. doi: 10.1080/16583655.2018.1537642
  • Nuruddeen RI, Nass AM. Exact solitary wave solution for the fractional and classical GEW–Burgers equations: an application of Kudryashov method. J. Taibah Univ. Sci. 2018;12(3):309–314. doi: 10.1080/16583655.2018.1469283
  • Sun H, Chen W, Chen Y. Variable-order fractional differential operators in anomalous diffusion modeling. Physica A Stat. Mech. Appl. 2009;388:4586–4592. doi: 10.1016/j.physa.2009.07.024
  • Fu Z, Chen W, Ling L. Method of approximate particular solutions for constant-and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. 2015;57:37–46. doi: 10.1016/j.enganabound.2014.09.003
  • Moghaddam BP, Machado JAT. A computational approach for the solution of a class of variable-order fractional integro-differential equations with weakly singular kernels. Fract. Calc. Appl. Anal. 2017;20:1023–1042.
  • Bhrawy AH, Zaky MA, Alzaidy JF. Two shifted Jacobi–Gauss collocation schemes for solving two-dimensional variable-order fractional Rayleigh–Stokes problem. Adv. Differ. Equ. 2016;2016:272. doi: 10.1186/s13662-016-0998-9
  • Doha EH, Youssri YH, Zaky MA. Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials. Bull. Iran. Math. Soc. 2018;8(2):1–29.
  • Zaky M, Doha E, Machado JAT. A spectral numerical method for solving distributed-order fractional initial value problems. J. Comput. Nonlinear Dynam. 2018;3:101007.
  • Bhrawy AH, Zaky MA, Abdel-Aty M. A fast and precise numerical algorithm for a class of variable-order fractional differential equations. Proc. Rom. Academy. 2017;18:17–24.