1,320
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Neurotoxicity and inflammation induced by individual and combined exposure to iron oxide nanoparticles and silver nanoparticles

, ORCID Icon & ORCID Icon
Pages 570-578 | Received 08 Dec 2018, Accepted 16 Mar 2019, Published online: 02 May 2019

References

  • Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727–1741.
  • Singh N, Jenkins GJ, Asadi R, et al. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1(1):5358.
  • Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12.
  • Wei LY, Lu JR, Xu HZ, et al. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20:595–601.
  • AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3(2):279–290.
  • Roy R, Kumar S, Tripathi A, et al. Interactive threats of nanoparticles to the biological system. Immunol Lett. 2010;158(1):79–87.
  • Mathias FT, Romano RM, Kizys MM, et al. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology. 2015;9(1):64–70.
  • Miethling-Graff R, Rumpker R, Richter M, et al. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol in Vitro. 2014;28(7):1280–1289.
  • Shi J, Sun X, Lin Y, et al. Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials. 2014;35(24):6657–6666.
  • Szalay B, Tátrai E, Nyírő G, et al. Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro experiments. J Appl Toxicol. 2012;32(6):446–453.
  • Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145(1):83–96.
  • Piantadosi CA, Suliman HB. Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem. 2006;281(1):324–333.
  • Li L, Pan R, Li R, et al. Mitochondrial biogenesis and peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) deacetylation by physical activity. Diabetes. 2011;60(1):157–167.
  • Miller SA, Dykes DD, Polesky HFRN. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.
  • Tappel AL, Zalkin H. Inhibition of lipide peroxidation in mitochondria by vitamin E. Arch Biochem Biophys. 1959;80:333–336.
  • Koracevic D, Koracevic G, Djordjevic V, et al. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol. 2001;54:356–361.
  • Montgomery HAC, Dymock JF. The determination of nitrate in water. Analyst. 1961;86:414–416.
  • Mishra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175.
  • Chiu DTY, Stults FH, Tappel AL. Purification and properties of rat lung soluble glutathione peroxidase. Biochimica et Biophysical Acta. 1976;445:558–566.
  • Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–7139.
  • Luck HC. In: Bergmeyer MV, editor. Method of enzymatic analysis. Verlag chemic. 1974. Academic Press, New, 885.
  • Jollow DJ, Michell JR, Zampaglionic N, et al. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11:151–169.
  • Drury RA, Wallington EA, Carleton S. Histological techniques. 5th ed. London (UK): Oxford University Press; 1980, 241–242.
  • Duncan DB. Multiple ranges and multiple F tests. Biometrics. 1955;11(1):1–42.
  • Wang B, Fengr W, Zhu Yun M, et al. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice. J Nanopart Res. 2009;11(1):41–53.
  • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–124.
  • Tang JL, Xiong L, Wang S, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009;9(8):4924–4932.
  • Wijnhoven SW, Peijnenburg WJ, Herberts CA, et al. Nanosilver- a review of available data and knowledge gaps in humanand environmental risk assessment. Nanotoxicol. 2009;3:109–138.
  • Koziara JM, Lockman PR, Allen DD, et al. The blood–brain barrier and brain drug delivery. J Nanosci Nanotechnol. 2006;6:2712–2735.
  • Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci. 2010;118:160–170.
  • Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB J. 1996;10(5):587–597.
  • Mesarosova M, Kozics K, Babelova A, et al. The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles. Toxicol Lett. 2014;226:303–313.
  • Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells gene. 2004;337:1–13.
  • Ribeiro MP, Santos AE, Custódio JB. Mitochondria: the gateway for tamoxifen-induced liver injury. Toxicology. 2014;323:10–18.
  • Voinov MA, Pagán JO, Morrison E, Smirnova TI, Smirnov AI. Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc. 2011;133:35–41.
  • Valdiglesias V, Kilic G, Costa C, et al. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environ Mol Mutagen. 2015;56:125–148.
  • Siddiqi NJ, Abdelhalim MA, El-Ansary AK, et al. Identification of potential biomarkers of gold nanoparticle toxicity in rat brains. J Neuroinflammation. 2012;9:123.
  • Safari M, Arbabi Bidgoli S, Rezayat SM. Differential neurotoxic effects of silver nanoparticles: A review with special emphasis on potential biomarkers. Nanomed J. 2015;3(2):83–94.
  • Jia'en-Li J, Muralikrishnan S, Ng CT, et al. Nanoparticle-induced pulmonary toxicity. Exp Biol Med. 2010;235:1025–1033.
  • Roco MC. National nanotechnology initiative, past, present, future. In: Handbook on nanoscience, engineering and technology. 2nd ed. Oxford (UK): Taylor and Francis Group; 2007, p. 3–26.
  • Poljak-Blaži M, Jaganjac M, Žarković N. Cell oxidative stress: risk of metal nanoparticles. London (UK); New York (NY): CRC Press Taylor; 2010.
  • Derstjerna ES, Johansson F, Klefbohm B, et al. Gold- and silver nanoparticles affect the growth characteristics of human embryonic neural precursor cells. PLOS ONE. 2013;8(3):e58211.
  • Camilla R, Silvia B, Simona A, et al. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol. 2016;13:12.