682
Views
18
CrossRef citations to date
0
Altmetric
Research Articles

Analytical and numerical solutions for the variant Boussinseq equations

ORCID Icon & ORCID Icon
Pages 454-462 | Received 27 Sep 2019, Accepted 24 Jan 2020, Published online: 31 Mar 2020

References

  • Inc M, Evans DJ. On traveling wave solutions of some nonlinear evolution equations. Int J Comput Math. 2004;81:191–202. DOI:10.1080/00207160310001603307.
  • Ablowitz MJ, Clarkson PA. Solitons, non-linear evolution equations and inverse scattering transformCambridge University Press; 1991. DOI:10.1017/CBO9780511623998.
  • Chow KW. A class of exact periodic solutions of nonlinear envelope equation. J Math Phys. 1995;36:4125–4137. DOI:10.1063/1.530951.
  • Wazwaz AM. Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method. Comput Math Appl. 2005;50:1685–1696. DOI:10.1016/j.camwa.2005.05.010.
  • Wazwaz AM. A sine–cosine method for handling nonlinear wave equations. Math Comput Model. 2004;40:499–508. DOI:10.1016/j.mcm.2003.12.010.
  • Zhang JL, Wang ML, Wang YM. The improved F-expansion method and its applications. Phys Lett A. 2006;350:103–109. DOI:10.1016/j.physleta.2005.10.099.
  • Malflieta W, Hereman W. The tanh method: exact solutions of nonlinear evolution and wave equations. Phys Scr. 1996;54:563–568. DOI:10.1088/0031-8949/54/6/003.
  • Wazwaz AM. The tanh method for travelling wave solutions of nonlinear equations. Appl Math Comput. 2004;154:714–723. DOI:10.1016/S0096-3003(03)00745-8.
  • Zhang B, Zhang X, Dai C. Discussions on localized structures based on equivalent solution with different forms of breaking soliton model. Nonlinear Dyn. 2017;87:2385–2393. DOI:10.1007/s11071-016-3197-z.
  • Hirota R. Exact envelope soliton solutions of a nonlinear wave equation. J Math Phys. 1973;14:805–810. DOI:10.1063/1.1666399.
  • Hirota R, Satsuma J. Soliton solution of a coupled KdV equation. Phys Lett A. 1981;85:407–408. DOI:10.1016/0375-9601.
  • Fan E. Extended tanh-function method and its applications to nonlinear equations. Phys Lett A. 2000;277:212–218. DOI:10.1016/S0375-9601(00)00725-8.
  • Wazwaz AM. The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. Appl Math Comput. 2007;187:1131–1142. DOI:10.1016/j.amc.2006.09.013.
  • Alam MN, Tunc C. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system. Alex Eng J. 2016;55:1855–1865. DOI:10.1016/j.aej.2016.04.024.
  • Khan K, Akbar MA. Application of Exp(-phi(xi))-expansion method to find the exact solutions of modified Benjamin–Bona–Mahony equation. World Appl Sci J. 2013;24:1373–1377. DOI:10.5829/idosi.wasj.2013.24.10.1130.
  • Khan K, Akbar MA. Exact traveling wave solutions of Kadomtsev–Petviashvili equation. J Egyptian Math Soc. 2015;23:278–281. DOI:10.1016/j.joems.2014.03.010.
  • Mahmoud A, Hassan S. New-exact-solutions-for-the-Maccari-system. J Phys Math. 2018;9(1):264), DOI:10.4172/2090-0902.1000264.
  • Wang ML, Li XZ. Extended F-expansion and periodic wave solutions for the generalized Zakharov equations. Phys Lett A. 2005;343:48–54. DOI:10.1016/j.physleta.2005.05.085.
  • Fan E, Zhang H. A note on the homogeneous balance method. Phys Lett A. 1998;246:403–406. DOI:10.1016/S0375-9601.
  • Abdelrahman MAE, Sohaly M, Alharbi AR. The new exact solutions for the deterministic and stochastic (2 + 1)-dimensional equations in natural sciences. J Taibah Univ Sci. 2019;13:834–843. DOI:10.1080/16583655.2019.1644832.
  • Alam MN, Tunç C. Constructions of the optical solitons and other solitons to the conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. J Taibah Univ Sci. 2019;14(1):94–100. DOI:10.1080/16583655.2019.1708542.
  • Shahida N, Tunç C. Resolution of coincident factors in altering the flow dynamics of an MHD elastoviscous fluid past an unbounded upright channel. J Taibah Univ Sci. 2019;13(1):1022–1034. DOI:10.1080/16583655.2019.1678897.
  • Dai C, Fan Y, Wang Y. Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials. Nonlinear Dyn. 2019;98:489–499. DOI:10.1007/s11071-019-05206-z.
  • Dai C, Wang Y, Fan Y. Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg–de Vries equation describing shallow water wave. Appl Math Mode. 2020;80:506–515. DOI:10.1016/j.apm.2019.11.056.
  • Kong L, Liu J, Jin D. Soliton dynamics in the three-spine α -helical protein with inhomogeneous effect. Nonlinear Dyn. 2017;87(1):83–92. DOI:10.1007/s11071-016-3027-3.
  • Alharbi AR, Almatrafi MB, Abdelrahman MAE. The extended Jacobian elliptic function expansion approach to the generalized fifth order KdV equation. J Phys Math. 2019;10(4):310). https://www.omicsonline.org/open-access/an-extended-jacobian-elliptic-function-expansion-approach-to-the-generalized-fifth-order-kdv-equation-110076.html.
  • Alharbi AR, Almatrafi MB. Numerical investigation of the dispersive long wave equation using an adaptive moving mesh method and its stability. Results Phys. 2020;16: 102870. DOI:10.1016/j.rinp.2019.102870.
  • Alharbi AR, Almatrafi MB. Riccati–Bernoulli sub-ODE approach on the partial differential equations and applications. Int J Math Comput Sci. 2020;15(1):367–388. http://ijmcs.future-in-tech.net/15.1/R-Almatrafi.pdf.
  • Ding D, Jin D, Dai C. Analytical solutions of differential-difference Sine-Gordon equation. Thermal Sci. 2017;21(4):1701–1705. DOI:10.2298/TSCI160809056D.
  • Huang W, Russell RD. The adaptive moving mesh methods. Springer; 2011. DOI:10.1007/978-1-4419-7916-2.
  • Budd CJ, Huang W, Russell RD. Adaptivity with moving grids. Acta Numer. 2009;18:111–241. DOI:10.1017/S0962492906400015.
  • Zhang HQ. Extended Jacobi elliptic function expansion method and its applications. Commun Nonlinear Sci Numer Simul. 2007;12:627–635. DOI:10.1155/2012/896748.
  • Zayed EME, Al-Joudi S. An Improved (G'/G)-expansion Method for Solving Nonlinear PDEs in Mathematical Physics. ICNAAM AIP Conf Proc. 2010;1281:2220–2224. DOI:10.1063/1.3498416.
  • Alharbi AR, Naire S. An adaptive moving mesh method for thin film flow equations with surface tension. J Comput Appl Math. 2017;319(4):365–384. DOI:10.1016/j.cam.2017.01.019.
  • Alharbi AR, Shailesh N. An adaptive moving mesh method for two-dimensional thin film flow equations with surface tension. J Comput Appl Math. 2019;356:219–230. DOI:10.1016/j.cam.2019.02.010.
  • Alharbi AR. 2016. Numerical solution of thin-film flow equations using adaptive moving mesh methods [Ph.D. thesis]. Keele: Keele University.
  • Walsh E. Moving mesh methods for problems in meteorology [PhD thesis]. Bath: University of Bath; 2010.
  • Ceniceros HD, Hou TY. An efficient dynamically adaptive mesh for potentially singular solutions. J Comput Phys. 2001;172(2):609–639. DOI:10.1006/jcph.2001.6844.