1,424
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Enhanced production and biochemical characterization of a thermostable amylase from thermophilic bacterium Geobacillus icigianus BITSNS038

, & ORCID Icon
Pages 730-745 | Received 29 Dec 2020, Accepted 01 Nov 2021, Published online: 12 Nov 2021

References

  • Paul JS, Beliya E, Tiwari S, et al. Production of biocatalyst α-amylase from agro-waste ‘rice bran’ by using Bacillus tequilensis TB5 and standardizing its production process. Biocatal Agric Biotechnol. 2020;26:101648.
  • Pinjari AB, Kotari V. Characterization of extracellular amylase from Bacillus sp. strain RU1. J Appl Biol Biotechnol. 2018;6:29–34.
  • Vaikundamoorthy R, Rajendran R, Selvaraju A, et al. Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem. 2018;77:494–506.
  • Ashok C, Palanimuthu D, Selvadurai SD, et al. An apodictic review on recent approaches in enzyme technology. Biointerface Res Appl Chem. 2021;12:3446–3471.
  • Jee SC, Kim M, Sung JS, et al. Efficient biofilms eradication by enzymatic-cocktail of pancreatic protease type-I and bacterial α-amylase. Polymers. 2020;12:3032.
  • Abdel-Mageed HM, Radwan RA, AbuelEzz NZ, et al. Bioconjugation as a smart immobilization approach for α-amylase enzyme using stimuli-responsive Eudragit-L100 polymer: a robust biocatalyst for applications in pharmaceutical industry. Artif Cell Nanomed Biotechnol. 2019;47:2361–2368.
  • Gomes I, Gomes J, Steiner W. Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresour Technol. 2003;90:207–214.
  • Haki GD, Rakshit SK. Developments in industrially important thermostable enzymes: a review. Bioresour Technol. 2003;89:17–34.
  • Turner P, Mamo G, Karlsson EN. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact. 2007;6:9.
  • Du R, Song Q, Zhang Q, et al. Purification and characterization of novel thermostable and Ca-independent α-amylase produced by Bacillus amyloliquefaciens BH072. Int J Biol Macromol. 2018;115:1151–1156.
  • Pan S, Gu Z, Ding N, et al. Calcium and sodium ions synergistically enhance the thermostability of a maltooligosaccharide-forming amylase from Bacillus stearothermophilus STB04. Food Chem. 2019;283:170–176.
  • Wu X, Wang Y, Tong B, et al. Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol. 2018;109:329–337.
  • Fincan SA, Özdemir S, Karakaya A, et al. Purification and characterization of thermostable α-amylase produced from Bacillus licheniformis So-B3 and its potential in hydrolyzing raw starch. Life Sci. 2021;264:118639.
  • Zeldes BM, Keller MW, Loder AJ, et al. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol. 2015;6:1209.
  • Kherouf M, Habbeche A, Benamia F, et al. Statistical optimization of a novel extracellular alkaline and thermostable amylase production from thermophilic Actinomadura keratinilytica sp. Cpt29 and its potential application in detergent industry. Biocatal Agric Biotechnol. 2021;35:102068.
  • Gupta R, Gigras P, Mohapatra H, et al. Microbial α-amylases: a biotechnological perspective. Process Biochem. 2003;38:1599–1616.
  • Abdel-Mageed HM, Fouad SA, Teaima MH, et al. Optimization of nano spray drying parameters for production of α-amylase nanopowder for biotheraputic applications using factorial design. Dry Technol. 2019;37:2152–2160.
  • Dheeran P, Kumar S, Jaiswal YK, et al. Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Appl Microbiol Biotechnol. 2010;86:1857–1866.
  • Ghorbel RE, Maktouf S, Massoud EB, et al. New thermostable amylase from Bacillus cohnii US147 with a broad pH applicability. Appl Biochem Biotechnol. 2009;157:50–60.
  • Lebre PH, Aliyu H, De Maayer P, et al. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact. 2018;17:156.
  • Soy S, Nigam VK, Sharma SR. Cellulolytic, amylolytic and xylanolytic potential of thermophilic isolates of Surajkund hot spring. J Biosci. 2019;44:124.
  • Fossi BT, Tavea F, Fontem LA, et al. Microbial interactions for enhancement of α-amylase production by Bacillus amyloliquefaciens 04BBA15 and Lactobacillus fermentum 04BBA19. Biotechnol Rep. 2014;4:99–106.
  • Nelson N. A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem. 1944;153:375–380.
  • Shao Y, Lin AH. Improvement in the quantification of reducing sugars by miniaturizing the Somogyi-Nelson assay using a microtiter plate. Food Chem. 2018;240:898–903.
  • Prakash P, Singh HR, Jha SK. Production, purification and kinetic characterization of glutaminase free anti-leukemic L-asparaginase with low endotoxin level from novel soil isolate. Prep Biochem Biotech. 2019;22:1–2.
  • Bernfeld P. Amylase alpha and beta. Methods Enzymol. 1955;1:149–158.
  • Sudan SK, Kumar N, Kaur I, et al. Production, purification and characterization of raw starch hydrolyzing thermostable acidic α-amylase from hot springs, India. Int J Biol Macromol. 2018;117:831–839.
  • Mehta D, Satyanarayana T. Biochemical and molecular characterization of recombinant acidic and thermostable raw-starch hydrolysing α-amylase from an extreme thermophile Geobacillus thermoleovorans. J Mol Catal B Enzym. 2013;85–86:229–238.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.
  • Santos EO, Martins MLL. Effect of the medium composition on formation of amylase by Bacillus sp. Braz Arch Biol Technol. 2003;46:129–134.
  • Passos ML, Ribeiro CP. Innovation in food engineering: new techniques and products. Boca Raton, FL: Polish Society of Microbiologists; 2009.
  • Abou MD, El-Sayed AK, El-Fallal AA, et al. Production and partial characterization of high molecular weight extracellular α-amylase from Thermoactinomyces vulgaris isolated from Egyptian soil. Pol J Microbiol. 2011;60:65–71.
  • Ulya M, Oesman F, Iqbalsyah TM. Low molecular weight alkaline thermostable α-amylase from Geobacillussp. nov. Heliyon. 2019;5:e02171.
  • Quiñonez DE, Llanos AZ, Cotrina DC, et al. Producción de amilasas de Geobacillus themoparaffinivorans (CB-13) aisladas de los géiseres de candarave, tacna. Cienc Desarro. 2019;24:38–44.
  • Sen SK, Dora TK, Bandyopadhyay B, et al. Thermostable alpha-amylase enzyme production from hot spring isolates Alcaligenes faecalis SSB17 – statistical optimization. Biocatal Agric Biotechnol. 2014;3:218–226.
  • Ashger M, Asad MJ, Rahman SU, et al. A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng. 2007;79:950–955.
  • Demirkan E, Sevgi T, Başkurt M. Optimization of physical factors affecting the production of the α-amylase from a newly isolated Bacillus sp. M10 strain. Karaelmas Sci Eng J. 2017;7:23–30.
  • Ravindar DJ, Elangovan N. Molecular identification of amylase producing Bacillus subtilis and detection of optimal conditions. J Pharm Res. 2013;6:426–430.
  • Acer Ö, Bekler FM, Pirinççioğlu H, et al. Purification and characterization of thermostable and detergent-stable alpha-amylase from Anoxybacillus sp. AH1. Food Technol Biotechnol. 2016;54:70–77.
  • El-Kady EM, Asker MS, Hassanein MS, et al. Optimization, production, and partial purification of thermostable α-amylase produced by marine bacterium Bacillus sp. NRC12017. IJPCR. 2017;9:558–570.
  • Morkeberg R, Carlsen M, Nielsen J. Induction and repression of α-amylase production in batch and continuous cultures of Aspergillus oryzae. Microbiology. 1995;141:2449–2454.
  • Ouattara HG, Reverchon S, Niamke SL, et al. Regulation of the synthesis of pulp degrading enzymes in Bacillus isolated from cocoa fermentation. Food Microbiol. 2017;63:255–262.
  • Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, et al. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol Biotechnol. 2006;44:269–274.
  • Narang S, Satyanarayana T. Thermostable alpha-amylase production by an extreme thermophile bacillus thermooleovorans. Lett Appl Microbiol. 2001;32:31–35.
  • Prakash B, Vidyasagar M, Madhukumar MS, et al. Production, purification, and characterization of two extremely halotolerant, thermostable, and alkali-stable α-amylases from Chromohalobacter sp. TVSP 101. Process Biochem. 2009;44:210–215.
  • Sharma A, Satyanarayana T. High maltose-forming, Ca2+-independent and acid-stable α-amylase from a novel acidophilic bacterium, Bacillus acidicola. Biotechnol Lett. 2010;32:1503–1507.
  • Rahmati P, Sajedi RH, Zamani P, et al. Allosteric properties of Geobacillus maltogenic amylase. Enzym Microb Technol. 2017;96:36–41.
  • Rao JLUM, Satyanarayana T. Improving production of hyperthermostable and high maltose-forming α-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Bioresour Technol. 2007;98:345–352.
  • Afrisham S, Badoei-Dalfard A, Namaki-Shoushtari A, et al. Characterization of a thermostable, CaCl2-activated and raw-starch hydrolyzing alpha-amylase from Bacillus licheniformis AT70: production under solid-state fermentation by utilizing agricultural wastes. J Mol Catal B: Enzym. 2016;132:98–106.
  • Ozdemir SC, Cihan AC, Kilic T, et al. Optimization of thermostable alpha-amylase production from Geobacillus sp. D413. J Microbiol Biotechnol Food Sci. 2016;6:689–694.
  • Kikani BA, Kourien S, Rathod U. Stability and thermodynamic attributes of starch hydrolyzing α-amylase of Anoxybacillus rupiensis TS-4. Starch-Stärke. 2020;72:1900105.
  • Ravindran R, Williams GA, Jaiswal AK. Evaluation of brewer's spent grain hydrolysate as a substrate for production of thermostable α-amylase by Bacillus stearothermophilus. Bioresour Technol Rep. 2019;5:141–149.
  • Vieille C, Zeikus GJ. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev. 2001;65:1–43.
  • Finore I, Kasavi C, Poli A, et al. Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. World J Microbiol Biotechnol. 2011;27:2425–2433.
  • Mollania N, Khajeh K, Hosseinkhani S, et al. Purification and characterization of a thermostable phytate resistant α-amylase from Geobacillus sp. LH8. Int J Biol Macromol. 2010;46:27–36.
  • Noshadi N, Mohammadi M, Najafpour GD, et al. Thermostable α-amylase from lignocellulosic residues using Bacillus amyloliquefaciens. Trans B Appl. 2017;30:1110–1117.
  • Simair AA, Qureshi AS, Khushk I, et al. Production and partial characterization of α-amylase enzyme from Bacillus sp. BCC 01-50 and potential applications. Biomed Res Int. 2017;2017:1–9.
  • Özdemir S, Okumus V, Ulutas MS, et al. Production and characterization of thermostable α-amylase from thermophilic Anoxybacillus flavithermus sp. nov. SO-19. Starch-Stärke. 2016;68:1244–1253.
  • Fincan SA, Enez B. Production, purification, and characterization of thermostable α-amylase from thermophilic Geobacillus stearothermophilus. Starch-Stärke. 2014;66:182–189.
  • Aymard C, Belarbi A. Kinetics of thermal deactivation of enzymes: a simple three parameters phenomenological model can describe the decay of enzyme activity, irrespectively of the mechanism. Enzyme Microb Technol. 2000;27:612–618.
  • Ait Kaki El-Hadef El-Okki A, Gagaoua M, Bennamoun L, et al. Statistical optimization of thermostable α-amylase production by a newly isolated Rhizopus oryzae strain FSIS4 using decommissioned dates. Waste Biomass Valor. 2017;8:2017–2027.
  • Gandhi S, Salleh AB, Rahman RN, et al. Expression and characterization of Geobacillus stearothermophilus SR74 recombinant α-amylase in Pichia pastoris. Biomed Res Int. 2015;2015:1–9.
  • Sun H, Zhao P, Ge X, et al. Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol. 2010;160:988–1003.
  • Božić N, Lončar N, MŠ S, et al. Raw starch degrading α-amylases: an unsolved riddle. Amylase. 2017;1:12–25.
  • Özdemir S, Fincan SA, Karakaya A, et al. A novel raw starch hydrolyzing thermostable α-amylase produced by newly isolated Bacillus mojavensis SO-10: purification, characterization and usage in starch industries. Braz Arch Biotechnol. 2018;61:e18160399.
  • Zhang L, Yin H, Zhao Q, et al. High alkaline activity of a thermostable α-amylase (cyclomaltodextrinase) from thermoacidophilic Alicyclobacillus isolate. Ann Microbiol. 2018;68:881–888.
  • Copeland L, Blazek J, Salman H, et al. Form and functionality of starch. Food Hydrocoll. 2009;23:1527–1534.
  • Kalpana BJ, Aarthy S, Pandian SK. Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm-forming human bacterial pathogens. Appl Biochem Biotechnol. 2012;167:1778–1794.
  • Elamary R, Salem WM. Optimizing and purifying extracellular amylase from soil bacteria to inhibit clinical biofilm-forming bacteria. PeerJ. 2020;8:e10288.
  • Sapkota S, Khadka S, Gautam A, et al. Screening and optimization of thermo-tolerant Bacillus sp. for amylase production and antifungal activity. JIST. 2019;24:47–56.
  • Ahmad R, Mohsin M, Ahmad T, et al. Alpha amylase assisted synthesis of TiO2 nanoparticles: structural characterization and application as antibacterial agents. J Hazard Mater. 2015;283:171–177.
  • Lahiri D, Nag M, Sarkar T, et al. Antibiofilm activity of α-amylase from Bacillus subtilis and prediction of the optimized conditions for biofilm removal by response surface methodology (RSM) and artificial neural network (ANN). Appl Biochem Biotechnol. 2021;193:1853–1872.
  • Saggu SK, Jha G, Mishra PC. Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10. Front Bioeng Biotechnol. 2019;7:192.
  • Anand J, Ramamoorthy K, Muthukumar G, et al. Production and partial purification of α-amylase producing Streptomyces sp. SNAJSM6 isolated from seaweed Sargassum myriocystum J. Agardh. Indian J Geo Mar Sci. 2019;48:1245–1251.
  • Timilsina PM, Pandey GR, Shrestha A, et al. Purification and characterization of a noble thermostable algal starch liquefying alpha-amylase from Aeribacillus pallidus BTPS-2 isolated from geothermal spring of Nepal. Biotechnol Rep. 2020;28:e00551.
  • Matpan Bekler F, Güven K, Gül Güven R. Purification and characterization of novel α-amylase from Anoxybacillus ayderensis FMB1. Biocatal Biotransfor. 2021;39:322–332.
  • Aladejana OM, Oyedeji O, Omoboye O, et al. Production, purification and characterization of thermostable alpha amylase from Bacillus subtilis Y25 isolated from decaying yam (Dioscorea rotundata) tuber. Not Sci Biol. 2020;12:154–171.
  • Burhanoğlu T, Sürmeli Y, Şanlı-Mohamed G. Identification and characterization of novel thermostable α-amylase from Geobacillus sp. GS33. Int J Biol Macromol. 2020;164:578–585.