330
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Incorporation of nanomaterial for the thermal management of the solidification process in mechanical storage

Pages 1065-1074 | Received 21 Jun 2022, Accepted 23 Oct 2022, Published online: 05 Nov 2022

References

  • Qin Y. Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin. J Energy Storage. 2021;44(Part B):103452. DOI:10.1016/j.est.2021.103452
  • Othman HA, Rguigui H, Altoum SH, et al. Nanomaterial efficacy on freezing of PCM with involvement of numerical simulation. J Mol Liq. 2022;362:119658. DOI:10.1016/j.molliq.2022.119658
  • Sheikholeslami M. Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting. Sol Energy Mater Sol Cells. 2022;245:111856. DOI:10.1016/j.solmat.2022.111856
  • Omri M, Bouterra M, Ouri H, et al. Entropy generation of nanofluid flow in hexagonal microchannel. J Taibah Univ Sci. 2022;16(1):75–88. DOI:10.1080/16583655.2022.2031567
  • Samylingam I, Aslfattahi N, Kadirgama K, et al. Improved thermophysical properties of developed ternary nitrate-based phase change material incorporated with MXene as novel nanocomposites. Energy Eng. 2021;118(5):1253–1265. DOI:10.32604/EE.2021.016087
  • Wang T, Almarashi A, Al-Turki YA, et al. Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J Mol Liq. 2021;329:115052. DOI:10.1016/j.molliq.2020.115052
  • Chu Y-M, Nazir U, Sohail M, et al. Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 2021;5(3):17. Article 119. DOI:10.3390/fractalfract5030119
  • Algehyne EA, Aldhabani MS, Saeed A, et al. Mixed convective flow of Casson and Oldroyd-B fluids through a stratified stretching sheet with nonlinear thermal radiation and chemical reaction. J Taibah Univ Sci. 2022;16(1):193–203. DOI:10.1080/16583655.2022.2040281
  • Sheikholeslami M. Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J Energy Storage. 2022;52(Part B):104954. DOI:10.1016/j.est.2022.104954
  • Chu Y-M, Abu-Hamdeh NH, Ben-Beya B, et al. Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J Mol Liq. 2020;320(Part B):114457. DOI:10.1016/j.molliq.2020.114457
  • Guo Z, Yang J, Tan Z, et al. Numerical study on gravity-driven granular flow around tube out-wall: effect of tube inclination on the heat transfer. Int J Heat Mass Transfer. 2021;174:121296. DOI:10.1016/j.ijheatmasstransfer.2021.121296
  • Huang K, Su B, Li T, et al. Numerical simulation of the mixing behaviour of hot and cold fluids in the rectangular T-junction with/without an impeller. Appl Therm Eng. 2022;204:117942. DOI:10.1016/j.applthermaleng.2021.117942
  • Chang H, Han Z, Li X, et al. Experimental investigation on heat transfer performance based on average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger. Energy. 2022;254:124164. DOI:10.1016/j.energy.2022.124164
  • Veera Krishna M, Ameer Ahammad N, Algehyne EA. Unsteady MHD third-grade fluid past an absorbent high-temperature shrinking sheet packed with silver nanoparticles and non-linear radiation. J Taibah Univ Sci. 2022;16(1):585–593. DOI:10.1080/16583655.2022.2087396
  • Chu Y-M, Hajizadeh MR, Li Z, et al. Investigation of nano powders influence on melting process within a storage unit. J Mol Liq. 2020;318:114321. DOI:10.1016/j.molliq.2020.114321
  • Guo Z, Tian X, Wu Z, et al. Heat transfer of granular flow around aligned tube bank in moving bed: experimental study and theoretical prediction by thermal resistance model. Energy Convers Manage. 2022;257:115435. DOI:10.1016/j.enconman.2022.115435
  • Cui W, Si T, Li X, et al. Heat transfer analysis of phase change material composited with metal foam-fin hybrid structure in inclination container by numerical simulation and artificial neural network. Energy Rep. 2022;8:10203–10218. DOI:10.1016/j.egyr.2022.07.178
  • Wu Y, Zhao Y, Han X, et al. Ultra-fast growth of cuprate superconducting films: dual-phase liquid assisted epitaxy and strong flux pinning. Mater Today Phys. 2021;18:100400. DOI:10.1016/j.mtphys.2021.100400
  • Guo C, Zhang Z, Wu Y, et al. Synergic realization of electrical insulation and mechanical strength in liquid nitrogen for high-temperature superconducting tapes with ultra-thin acrylic resin coating. Supercond Sci Technol. 2022;35:075014. DOI:10.1088/1361-6668/ac6e0d
  • Li J, Han C, Ou X, et al. Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew Chem Int Ed. 2022;61. DOI:10.1002/anie.202116668
  • Zhang X, Tang Y, Zhang F, et al. A novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588. DOI:10.1002/aenm.201502588
  • Hamdi AYED, Othman HA, Zhang Y, et al. Thermal storage evaluation in existence of nano-sized additives by mean of numerical method. J Energy Storage. 2022;55(Part B):105582. DOI:10.1016/j.est.2022.105582
  • Han M, He H, Kong W, et al. High-performance electret and antibacterial polypropylene meltblown nonwoven materials doped with boehmite and ZnO nanoparticles for air filtration. Fibers Polym. 2022. DOI:10.1007/s12221-022-4786-8
  • Chu Y-M, Yadav D, Shafee A, et al. Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J Mol Liq. 2020;319:114121. DOI:10.1016/j.molliq.2020.114121
  • Rehman WU, Khan SU-D. Thermoplastic polyurethane conjugated antimony doped tin oxide nanocomposite for enhanced electrical and thermal conductivity. Synth Met. 2020;269:116570.
  • Majid A, Iqbal J, Ali A. Structural, optical and magnetic properties of Ce–GaN based diluted magnetic semiconductor. J Supercond Novel Magn. 2011;24(1):585–590.
  • Lacroix M, Benmadda M. Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numer Heat Transfer, Part A Appl. 1997;31(1):71–86.
  • Acır A, Emin Canlı M. Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM). Appl Therm Eng. 2018;144:1071–1080.
  • Hu N, Zhu Z-Q, Li Z-R, et al. Close-contact melting heat transfer on a heated horizontal plate: revisited in the presence of nano-enhanced phase change materials (NePCM). Int J Heat Mass Transfer. 2018;124:794–799.
  • Deng S, Nie C, Jiang H, et al. Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. Int J Heat Mass Transfer. 2019;130:532–544.
  • Tian L-L, Liu X, Chen S, et al. Effect of fin material on PCM melting in a rectangular enclosure. Appl Therm Eng. 2020;167:114764.
  • Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–355. DOI:10.1016/j.molliq.2018.05.132
  • Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.
  • Ismail K, Alves C, Modesto M. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001;21:53–77.