569
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Natural convection of nanofluid flow in a porous medium in a right-angle trapezoidal enclosure: a Tiwari and Das’ nanofluid model

, , &
Article: 2263224 | Received 31 Jul 2023, Accepted 21 Sep 2023, Published online: 04 Oct 2023

References

  • M. Hemmat Esfe M, Bahiraei M, Hajbarati H, et al. A comprehensive review on convective heat transfer of nanofluids in porous media: energy-related and thermohydraulic characteristics. Appl Therm Eng. 2020;178:115487. doi:10.1016/j.applthermaleng.2020.115487
  • Sheremet MA, Pop I, Nazar R. Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. Int J Mech Sci. 2015;100:312–321. doi:10.1016/j.ijmecsci.2015.07.007
  • Barman P, Rao PS. Effect of aspect ratio on natural convection in a wavy porous cavity submitted to a partial heat source. Int Commun Heat Mass Transfer. 2021;126:105453. doi:10.1016/j.icheatmasstransfer.2021.105453
  • Aly AM, Raizah Z, El-Sapa S, et al. Thermal diffusion upon magnetic field convection of nano-enhanced phase change materials in a permeable wavy cavity with crescent-shaped partitions. Case Stud Therm Eng. 2022;31:101855. doi:10.1016/j.csite.2022.101855
  • Barnoon P, Toghraie D, Dehkordi RB, et al. Two phase natural convection and thermal radiation of non-Newtonian nanofluid in a porous cavity considering inclined cavity and size of inside cylinders. Int Commun Heat Mass Transfer. 2019;108:104285. doi:10.1016/j.icheatmasstransfer.2019.104285
  • Al-Kouz W, Aissa A, Koulali A, et al. MHD darcy-forchheimer nanofluid flow and entropy optimization in an odd-shaped enclosure filled with a (MWCNT-Fe3O4/water) using galerkin finite element analysis. Sci Rep. 2021;11:22635. doi:10.1038/s41598-021-02047-y
  • Sheremet MA, Grosan T, Pop I. Free convection in a square cavity filled with a porous medium saturated by nanofluid using Tiwari and Das’ nanofluid model. Transp Porous Med. 2015;106:595–610. doi:10.1007/s11242-014-0415-3
  • Al-Weheibi SM, Rahman MM, Saghir MZ. Impacts of variable porosity and variable permeability on the thermal augmentation of Cu–H2O nanofluid-drenched porous trapezoidal enclosure considering thermal nonequilibrium model. Arab J Sci Eng. 2020;45:1237–1251. doi:10.1007/s13369-019-04234-6
  • Dogonchi AS, Nayak MK, Karimi N, et al. Numerical simulation of hydrothermal features of Cu–H2O nanofluid natural convection within a porous annulus considering diverse configurations of heater. J Therm Anal Calorim. 2020;141:2109–2125. doi:10.1007/s10973-020-09419-y
  • Mehryan SAM, Ghalambaz M, Chamkha AJ, et al. Numerical study on natural convection of Ag–MgO hybrid/water nanofluid inside a porous enclosure: a local thermal non-equilibrium model. Powder Technol. 2020;367(1):443–455. doi:10.1016/j.powtec.2020.04.005
  • Barnoon P, Toghraie D, Karimipour A. Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field. J Therm Anal Calorim. 2021;145:3301–3323. doi:10.1007/s10973-020-09896-1
  • Al-Farhany K, et al. Numerical investigation of natural convection on Al2O3–water porous enclosure partially heated with two fins attached to its hot wall: under the MHD effects. Appl Nanosci. 2023;13(1):555–572. doi:10.1007/s13204-021-01855-y
  • Abderrahmane A, et al. Investigation of the free convection of nanofluid flow in a wavy porous enclosure subjected to a magnetic field using the Galerkin finite element method. J Magn Magn Mater. 2023;569:170446. doi:10.1016/j.jmmm.2023.170446
  • Chordiya J, Sharma RV. Numerical analysis of the longitudinal size of the partition on natural convection heat transfer and fluid flow within a differentially heated porous enclosure. Heat Transfer. 2023;52(1):890–910. doi:10.1002/htj.22721
  • Hosseinzadeh K, Moghaddam ME, Nateghi S, et al. Radiation and convection heat transfer optimization with MHD analysis of a hybrid nanofluid within a wavy porous enclosure. J Magn Magn Mater. 2023;566:170328. doi:10.1016/j.jmmm.2022.170328
  • Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model. 2013;37(3):1451–1467. doi:10.1016/j.apm.2012.04.004
  • Ellahi R, Sait SM, Shehzad N, et al. A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Methods Heat Fluid Flow. 2020;30(2):834–854. doi:10.1108/HFF-06-2019-0506
  • Bhatti MM, Abdelsalam SI. Scientific breakdown of a ferromagnetic nanofluid In hemodynamics: enhanced therapeutic approach. Math Model Nat Phenom. 2022;17:44. doi:10.1051/mmnp/2022045
  • Tripathi D, Sharma A, Anwar Bég O. Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv Powder Technol. 2018;29(3):639–653. doi:10.1016/j.apt.2017.12.009
  • Akbar NS, Huda AB, Habib MB, et al. Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics. Microsyst Technol. 2019;25:283–294. doi:10.1007/s00542-018-3963-6
  • Tripathi D, Bhushan S, Bég OA, et al. Transient peristaltic diffusion of nanofluids: a model of micropumps in medical engineering. J Hydrodyn. 2018;30(6):1001–1011. doi:10.1007/s42241-018-0140-4
  • Venkatadri K. Visualization of thermo-magnetic natural convective heat flow in a square enclosure partially filled with a porous medium using bejan heatlines and Hooman energy flux vectors: hybrid fuel cell simulation. Geoenergy Sci Eng. 2023;224:211591. doi:10.1016/j.geoen.2023.211591
  • Gibanov NS, Sheremet MA, Pop I. Free convection in a trapezoidal cavity filled with a micropolar fluid. Int J Heat Mass Transf. 2016;99:831–838. doi:10.1016/j.ijheatmasstransfer.2016.04.056
  • Vedavathi N, Venkatadri K, Fazuruddin S, et al. Natural convection flow in semi-trapezoidal porous enclosure filled with alumina-water nanofluid using Tiwari and Das’ nanofluid model. Eng Trans. 2022;70(4):303–318. doi:10.24423/EngTrans.1285.20221004
  • Venkatadri K. Radiative magneto-thermogravitational flow in a porous square cavity with viscous heating and hall current effects: a numerical study of ψ–v scheme. Heat Transfer. 2022;51(7):6705–6723. doi:10.1002/htj.22619
  • De Vahl Davis D. Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Meth Fluids. 1983;3:249–264. doi:10.1002/fld.1650030305
  • Manzari MT. An explicit finite element algorithm for convective heat transfer problems. Int J Numer Meth Heat Fluid Flow. 1999;9:860–877.
  • Wan DC, Patnaik BSV, Wei GW. A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numerical Heat Transfer Part B. 2001;40:199–228. doi:10.1080/104077901752379620