155
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Further investigation for the 18O + 40Ca, 76Se and 116Sn elastic scattering angular distributions

ORCID Icon, &
Article: 2330129 | Received 17 Mar 2023, Accepted 08 Mar 2024, Published online: 19 Mar 2024

References

  • Quesada JM, Lozano M, Madurga G. A phenomenological imaginary part of the optical potential for heavy ions. Phys Lett B. 1983;125(1):14–18. doi:10.1016/0370-2693(83)91224-8
  • Gobbi A, Wieland R, Chua L, et al. Entrance channel phenomena in complex nuclear scattering. Phys Rev, C Nucl Phys. 1973;7(1):30–43. doi:10.1103/PhysRevC.7.30
  • Greiner W. Proc. intern. conf. on dynamical properties of heavy-ion reaction (Johannesburg, South Africa, 1978). South African J Phys . 1978;1:75.
  • Izumoto T, Krewald S, Faessler A. Nuclear matter approach to the heavy-ion optical potential. Nucl Phys A. 1981;357(2):471–487. doi:10.1016/0375-9474(81)90232-3
  • Broglia RA, Pollarolo G, Winther A. On the absorptive potential in heavy ion scattering. Nucl Phys A. 1981;361(1):307–325. doi:10.1016/0375-9474(81)90480-2
  • Bartnitzky G, et al. Nucleus–nucleus scattering and the equation of state. Low Energy Nuclear Dynamics: XV Nuclear Physics Divisional Conference, St. Petersburg, Russia, April 18–22, 1995.
  • Agarwalla SK, Mallick GS, Prema P, et al. Analysis of 16O +28Si elastic scattering in the laboratory energy range 50.0 MeV to 142.5 MeV. J Phys G: Nucl Part Phys. 2006;32(2):165–178. doi:10.1088/0954-3899/32/2/008
  • Lee SY, Chan YD., Preprint University of Washington, 1978.
  • Sonika Roy BJ, Parmar A, Pal UK, et al. Multinucleon transfer study in 206Pb (18O,X) at energies above the Coulomb barrier. Phys Rev, C Nucl Phys. 2015;92(2):024603. doi:10.1103/PhysRevC.92.024603
  • Jha V, Roy BJ, Chatterjee A, et al. Studies of multi-nucleon transfer reactions in 90Zr(18O,X) and 90Zr(16O,X). Eur Phys J A. 2004;19(3):347–354. doi:10.1140/epja/i2002-10310-7
  • Aygun M. Analysis with SDHO and RMF density distributions of elastic scattering cross-sections of oxygen isotopes (16–18O) by various target nuclei. Int J Mod Phys E . 2018;27(07):1850055. doi:10.1142/S0218301318500556
  • Ahmad S, Usmani AA, Ahmad S, et al. Interaction cross sections and matter radii of oxygen isotopes using the Glauber model. Phys Rev, C Nucl Phys. 2017;95(5):054601. doi:10.1103/PhysRevC.95.054601
  • Cavallaro M, Bellone JI, Calabrese S, et al. A constrained analysis of the 40Ca(18O,18F)40K direct charge exchange reaction mechanism at 275 MeV. Front Astron Space Sci. 2021;8:659815. doi:10.3389/fspas.2021.659815
  • La Fauci L, Spatafora A, Cappuzzello F, et al. 18O+76Se elastic and inelastic scattering at 275 MeV. Phys Rev, C Nucl Phys. 2021;104(5):054610. doi:10.1103/PhysRevC.104.054610
  • Carbone D, Linares R, Amador-Valenzuela P, et al. Initial state interaction for the 20Ne + 130Te and 18O + 116Sn systems at 15.3 A MeV from elastic and inelastic scattering measurements. Universe. 2021;7(3):58. doi:10.3390/universe7030058
  • Cappuzzello F, Agodi C, Cavallaro M, et al. The NUMEN project: NUclear Matrix Elements for Neutrinoless double beta decay. Eur Phys J A. 2018;54(5). doi:10.1140/epja/i2018-12509-3
  • Cappuzzello F, Agodi C, Bondì M, et al. The role of nuclear reactions in the problem of 0νββ decay and the NUMEN project at INFN-LNS. J Phys Conf Ser. 2015;630:012018. doi:10.1088/1742-6596/630/1/012018
  • Satchler GR, Love WG. Folding model potentials from realistic interactions for heavy-ion scattering. Phys Rep. 1979;55(3):183–254. doi:10.1016/0370-1573(79)90081-4
  • Farid ME-A, Satchler GR. A density-dependent interaction in the folding model for heavy-ion potentials. Nucl Phys A. 1985;438(2):525–535. doi:10.1016/0375-9474(85)90391-4
  • Khoa DT, Von Oertzen W, Bohlen HG. Double-folding model for heavy-ion optical potential: revised and applied to study 12C and 16O elastic scattering. Phys Rev, C Nucl Phys. 1994;49(3):1652–1668. doi:10.1103/PhysRevC.49.1652
  • Khoa DT, Satchler GR, Von Oertzen W. Nuclear incompressibility and density dependent NN interactions in the folding model for nucleus–nucleus potentials. Phys Rev, C Nucl Phys. 1997;56(2):954–969. doi:10.1103/PhysRevC.56.954
  • Khoa DT, Phuc NH, Loan DT, et al. Nuclear mean field and double-folding model of the nucleus-nucleus optical potential. Phys Rev, C Nucl Phys. 2016;94(3):034612. doi:10.1103/PhysRevC.94.034612
  • Khoa DT, Oertzen Wv, Bohlen HG, et al. Nuclear rainbow scattering and nucleus–nucleus potential. J Phys G: Nucl Part Phys. 2007;34(3):R111–R164. doi:10.1088/0954-3899/34/3/R01
  • Behairy KO, El-Azab Farid M, Ibraheem AA, et al. Analysis of strong refractive effect within 11Li projectile structure. Chinese Physics C. 2021;45(2):024101. doi:10.1088/1674-1137/abca1b
  • Chamon LC, Carlson BV, Gasques LR, et al. Toward a global description of the nucleus-nucleus interaction. Phys Rev, C Nucl Phys. 2002;66(1):014610. doi:10.1103/PhysRevC.66.014610
  • Chamon LC, Carlson BV, Gasques LR. São Paulo potential version 2 (SPP2) and Brazilian nuclear potential (BNP). Comput Phys Commun. 2021;267:108061. doi:10.1016/j.cpc.2021.108061
  • Candido Ribeiro MA, Chamon LC, Pereir D, et al. Pauli nonlocality in heavy-ion rainbow scattering:  A further test of the folding model. Phys Rev Lett 1997;78:3270. doi:10.1103/PhysRevLett.78.3270
  • Chamon LC. The São Paulo potential. Nucl Phys A. 2007;787(1–4):198–205. doi:10.1016/j.nuclphysa.2006.12.032
  • Chamon LC, Pereira D, Hussein MS, et al. Non local description of the nucleus-nucleus interaction.Phys Rev Lett. 1997;79:5218. doi:10.1103/PhysRevLett.79.5218
  • Olorunfunmi SD, Bahini A. Reanalysis of 10B+120Sn elastic scattering cross section using São Paulo potential version 2 and Brazilian nuclear potential. Braz J Phys. 2022;52(1).
  • Majka Z, Gils HJ, Rebel H. Cluster folding model for 12C(6Li, 6Li)12C scattering at 156 MeV.Phys Rev C. 1982;25:2996. doi:10.1103/PhysRevC.25.2996
  • Crema E, Gomes PRS, Chamon LC. Appropriate bare potentials for studying fusion induced by 6He. Phys Rev, C Nucl Phys. 2007;75(3):037601. doi:10.1103/PhysRevC.75.037601
  • Watanabe S. High energy scattering of deuterons by complex nuclei. Nuclear Phys. 1958;8:484–492. doi:10.1016/0029-5582(58)90180-9
  • Hemmdan A, Hassanain MA, Anwar M, et al. Analysis of elastic and inelastic scattering of 20Ne on 76Ge at 306 MeV. Phys Rev, C Nucl Phys. 2021;104(4):044604. doi:10.1103/PhysRevC.104.044604
  • Anwar M, Hemmdan A. Cluster folding model analysis of the 7Be+28Si elastic scattering in the near-barrier. J Phys G: Nucl Part Phys. 2023;50(2):025105. doi:10.1088/1361-6471/acb0e8
  • Sakuda T. Admixtures of shell and cluster states in 18O. Prog Theor Phys. 1977;57(3):855–865. doi:10.1143/PTP.57.855
  • Sakuda T, Nagata S, Nemoto F. Prog Theor Phys 1978;59:1543. doi:10.1143/PTP.59.1543
  • Cunsolo A, Foti A, Immè G, et al. 18O states via the 14C(6Li,d)18O reaction at 34 MeV incident energy. Phys Rev, C Nucl Phys. 1981;24(2):476–487. doi:10.1103/PhysRevC.24.476
  • Curtis N, Caussyn DD, Chandler C, et al. Evidence for a molecular rotational band in the14C+α decay of 18O and the α decay of 22Ne. Phys Rev, C Nucl Phys. 2002;66(2):024315. doi:10.1103/PhysRevC.66.024315
  • Avila ML, Rogachev GV, Goldberg VZ, et al. α-cluster structure of 18O. Phys Rev, C Nucl Phys. 2014;90(2):024327. doi:10.1103/PhysRevC.90.024327
  • Yang B, Ye YL, Feng J, et al. Investigation of the 14C+ α molecular configuration in 18O by means of transfer and sequential decay reaction. Phys Rev, C Nucl Phys. 2019;99(6):064315. doi:10.1103/PhysRevC.99.064315
  • Baba T, Kimura M. Variety of clustering in 18O. Phys Rev, C Nucl Phys. 2019;100(6):064311. doi:10.1103/PhysRevC.100.064311
  • Von Oertzen W, Dorsch T, Bohlen HG, et al. Molecular and cluster structures in 18O. Eur Phys J A. 2010;43(1):17. doi:10.1140/epja/i2009-10894-2
  • Pirrie S, Wheldon C, Kokalova T, et al. Clustering in 18O – absolute determination of branching ratios via high-resolution particle spectroscopy. SciPost Physics Proc. 2020;3:009. doi:10.21468/SciPostPhysProc.3.009
  • Baba T, Kimura M. Monopole and dipole transitions of the cluster states of 18O. Phys Rev, C Nucl Phys. 2020;102(2):024317. doi:10.1103/PhysRevC.102.024317
  • Poling JE, Norbeck E, Carlson RR. Elastic scattering of lithium by 9Be, 10B, 12C, 13C, 16O, and 28Si from 4 to 63 MeV. Phys Rev, C Nucl Phys. 1976;13(2):648–660. doi:10.1103/PhysRevC.13.648
  • Bertsch G, Borysowicz J, McManus H, et al. Interactions for inelastic scattering derived from realistic potentials. Nucl Phys A. 1977;284(3):399–419. doi:10.1016/0375-9474(77)90392-X
  • Gao-Long Z, Hao L, Xiao-Yun L. Nucleon–nucleon interactions in the double folding model for fusion reactions. Chin Phys B. 2009;18(1):136–141. doi:10.1088/1674-1056/18/1/021
  • Carlson BV, Hirata D. Dirac–Hartree–Bogoliubov approximation for finite nuclei. Phys Rev, C Nucl Phys. 2000;62(5):054310. doi:10.1103/PhysRevC.62.054310
  • Goriely S, Samyn M, Pearson JM. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. VII. Simultaneous fits to masses and fission barriers. Phys Rev, C Nucl Phys. 2007;75(6):064312. doi:10.1103/PhysRevC.75.064312
  • De Vries H, De Jager CW, De Vries C. Nuclear charge-density-distribution parameters from elastic electron scattering. At Data Nucl Data Tables. 1987;36(3):495–536. doi:10.1016/0092-640X(87)90013-1
  • Thompson IJ. Coupled reaction channels calculations in nuclear physics. Comput Phys Rep. 1988;7(4):167–212. doi:10.1016/0167-7977(88)90005-6
  • Lohner H, Eickhoff H, Frekers D, et al. Investigation of large angle structure in α-scattering from calcium isotopes between E = 36-61 MeV. Zeitsch Phys A Atoms Nuclei. 1978;286(1):99–106. doi:10.1007/BF01434618
  • England JBA, Baird S, Newton DH, et al. The elastic scattering of 25 MeV α-particles and neutron shell effects in the A = 50 to A = 93 mass region. Nucl Phys A. 1982;388(3):573–605. doi:10.1016/0375-9474(82)90478-X
  • Bingham CR, Halbert ML, Quinton AR. Scattering of 65-MeV alpha Particles from 89Y, 92Zr, 94Zr, 96Zr, and 116Sn. Phys Rev. 1969;180(4):1197–1206. doi:10.1103/PhysRev.180.1197
  • Santra S, Kailas S, Ramachandran K, et al. Reaction mechanisms involving weakly bound 6Li and 209Bi at energies near the Coulomb barrier. Phys Rev, C Nucl Phys. 2011;83(3):034616), doi:10.1103/PhysRevC.83.034616
  • Clarke NM. private communication.
  • Kolata JJ, Aguilera EF. Interaction barriers for light, weakly bound projectiles. Phys Rev, C Nucl Phys. 2009;79(2):027603. doi:10.1103/PhysRevC.79.027603
  • Aguilera EF, Martel I, Sánchez-Benítez AM, et al. Systematics of reactions with 4,6He: Static and dynamic halo effects and evidence for core-halo decoupling. Phys Rev, C Nucl Phys. 2011;83(2):021601. doi:10.1103/PhysRevC.83.021601
  • Wong CY. Interaction barrier in charged-particle nuclear reactions. Phys Rev Lett. 1973;31(12):766–769. doi:10.1103/PhysRevLett.31.766
  • Burks BL, Fernandes MAG, Satchler GR, et al. Optical model and coupled-channels analyses of the elastic and inelastic scattering of 18O from 28Si at 352 MeV. Phys Rev, C Nucl Phys. 1988;38(4):1680–1691. doi:10.1103/PhysRevC.38.1680
  • Al-Abdullah T, Carstoiu F, Chen X, et al. Astrophysical reaction rate for 17F(p,γ)18Ne from the transfer reaction 13C(17O,18O)12C. Phys Rev, C Nucl Phys. 2014;89(2):025809. doi:10.1103/PhysRevC.89.025809
  • Sahu PK, Choudhury RK, Biswas DC, et al. Evidence for correlated pair transfer of valence nucleons in multiparticle stripping channels in the 18O+174Yb reaction. Phys Rev, C Nucl Phys. 2001;64(1):014609. doi:10.1103/PhysRevC.64.014609
  • Nicoli MP, Haas F, Freeman RM, et al. Detailed study and mean field interpretation of 16O+12C elastic scattering at seven medium energies. Phys Rev, C Nucl Phys. 2000;61(3). doi:10.1103/PhysRevC.61.034609
  • Shorto JMB, Gomes PRS, Lubian J, et al. Reaction functions for weakly bound systems. Phys Lett B. 2009;678(1):77–81. doi:10.1016/j.physletb.2009.05.069
  • Feshbach H. A unified theory of nuclear reactions. II. Ann Phys. 1962;19(2):287–313. doi:10.1016/0003-4916(62)90221-X
  • Hamada Sh, Ibraheem AA. Rev Mex Fıs. 2022;68:041202.
  • Rawitscher GH. Effect of deuteron breakup on elastic deuteron - nucleus scattering. Phys Rev, C Nucl Phys. 1974;9(6):2210–2229. doi:10.1103/PhysRevC.9.2210