16
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Harnessing Aristolochia bracteolate bud extract for green synthesis and characterization of silver nanocomposite films: assessing their potent antimicrobial proficiency

ORCID Icon, , , , , & show all
Article: 2379072 | Received 04 Dec 2023, Accepted 08 Jul 2024, Published online: 17 Jul 2024

References

  • Oves M, Rauf M, Aslam M, et al. Green synthesis of silver nanoparticles by Conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J Biol Sci. 2022;29(1):460–471. doi:10.1016/j.sjbs.2021.09.007
  • Manal AA, Hendi AA, Ortashi KM, et al. Greener synthesis, characterization, and antimicrobiological effects of helba silver nanoparticle-PMMA nanocomposite. Int J Polym Sci. 2019;2019:1–7. doi:10.1155/2019/4379507
  • Altammar KA. A review on nanoparticles: characteristics, synthesis, applications, and challenges. Front Microbiol. 2023;14:1155622. doi:10.3389/fmicb.2023.1155622
  • Oves M, Rauf MA, Qari HA. Therapeutic applications of biogenic silver nanomaterial synthesized from the paper flower of Bougainvillea glabra (Miami, Pink). Nanomaterials. 2023;13(3):615. doi:10.3390/nano13030615
  • Mohanta YK, Mishra AK, Nayak D, et al. Exploring dose-dependent cytotoxicity profile of Gracilaria edulis-mediated green synthesized silver nanoparticles against MDA-MB-231 breast carcinoma. Oxid Med Cell Longev. 2022;2022:3863138. doi:10.1155/2022/3863138
  • Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Sci Eng C. 2018;89:429–443. doi:10.1016/j.msec.2018.03:035
  • Jayeoye TJ, Eze FN, Olatunde OO, et al. Multifarious biological applications and toxic Hg2+ sensing potentiality of biogenic silver nanoparticles based on Securidaca inappendiculata Hassk stem extract. Int J Nanomedicine. 2021;16:7557–7574. doi:10.2147/IJN.S325996
  • Asif M, Yasmin R, Asif R, et al. Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose Response. 2022;20(2):15593258221088709. doi:10.1177/15593258221088709
  • Falsaf SR, Topuz F, Bajer D, et al. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes. Biomed Pharmacother. 2023;168:115695. doi:10.1016/j.biopha.2023.115695
  • Alshangiti DM, El-Damhougy TK, Zaher A, et al. Revolutionizing biomedicine: advancements, applications, and prospects of nanocomposite macromolecular carbohydrate-based hydrogel biomaterials: a review. RSC Adv. 2023;13(50):35251–35291. doi:10.1039/D3RA07391B
  • Jayeoye J, Eze F, Olatunji OJ, et al. Synthesis of biocompatible Konjac glucomannan stabilized silver nanoparticles, with Asystasia gangetica phenolic extract for colorimetric detection of mercury (II) ion. Sci Rep. 2022;12:9176. doi:10.1038/s41598-022-13384-x
  • Haghparasti Z, Shahri M. Green synthesis of water-soluble nontoxic inorganic polymer nanocomposites containing silver nanoparticles using white tea extract and assessment of their in vitro antioxidant and cytotoxicity activities. Mater Sci Eng C. 2018;87:139–148. doi:10.1016/j.msec.2018.02.026
  • Chen G, Lu J, Lam C, et al. A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst. 2014;139(22):5793–5799. doi:10.1039/C4AN01301H
  • Awad MA, Mekhamer WK, Merghani NM, et al. Green synthesis, characterization, and antibacterial activity of silver/polystyrene nanocomposite. J Nanomater. 2015;2015:5. doi:10.1155/2015/943821
  • Manal AGA, Awatif AH, Khalid MOO, et al. Synthesis of silver-PMMA nanocomposite film using herbal extract. Application US15/956,675, 2018-04-18.
  • Rajapaksha P, Elbourne A, Gangadoo S, et al. A review of methods for the detection of pathogenic microorganisms. Analyst. 2019;144(2):396–411. doi:10.1039/C8AN01488D
  • Hanaor D, Sorrell C. Sand supported mixed-phase TiO2 photocatalysts for water decontamination applications. Adv Eng Mater. 2014;16(2):248–254. doi:10.1002/adem.201300259
  • Kelly K, Coronado E, Zhao LL, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–677. doi:10.1021/jp026731y
  • Alomar TS, AlMasoud N, Awad MA, et al. Designing green synthesis-based silver nanoparticles for antimicrobial theranostics and cancer invasion prevention. Int J Nanomedicine. 2024;19:4451–4464. doi:10.2147/IJN.S440847
  • Roy A, Bulut O, Some S, et al. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9(5):2673–2702. doi:10.1039/C8RA08982E
  • Klein W, Ismail E, Maboza E, et al. Green-synthesized silver nanoparticles: antifungal and cytotoxic potential for further dental applications. J Funct Biomater. 2023;14(7):379. doi:10.3390/jfb14070379
  • Awad MA, Alkhulaifi M, Aldosari NS, et al. Novel eco-synthesis of PD silver nanoparticles: characterization, assessment of its antimicrobial and cytotoxicity properties. Materials. 2019;12(23):3890. doi:10.3390/ma12233890
  • Thomas R, Snigdha S, Bhavitha K, et al. Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. 3 Biotech. 2018;8:1–10. doi:10.1007/s13205-018-1420-y
  • Awad MA, Hendi AA, Ortashi KM, et al. Utilizing Cymbopogon proximus grass extract for green synthesis of zinc oxide nanorod needles in dye degradation studies. Molecules. 2024;29(2):355. doi:10.3390/molecules29020355
  • Gharibshahi L, Saion E, Gharibshahi E, et al. Structural and optical properties of Ag nanoparticles synthesized by thermal treatment method. Materials. 2017;10(4):402. doi:10.3390/ma10040402
  • Gopalakrishnan S, Mathew TA, Mozetič M, et al. Development of biocompatible and biofilm-resistant silver-poly (methylmethacrylate) nanocomposites for stomatognathic rehabilitation. Int J Polym Mater Polym Biomater. 2019;69(3):186–199. doi:10.1080/00914037.2018.1552863
  • Borse S, Temgire M, Khan A, et al. Photochemically assisted one-pot synthesis of PMMA embedded silver nanoparticles: antibacterial efficacy and water treatment. RSC Adv. 2016;6(61):56674–56683. doi:10.1039/C6RA08397H
  • Vodnik V, Vuković V, Nedeljković M. Synthesis and characterization of silver – poly (methylmethacrylate) nanocomposites. Colloid Polym Sci. 2009;287:847–851. doi:10.1007/s00396-009-2039-7
  • Singho D, Johan R, Lah C. Temperature-dependent properties of silver-poly (methylmethacrylate) nanocomposites synthesized by in-situ technique. Nanoscale Res Lett. 2014;9:1–6. doi:10.1186/1556-276X-9-42
  • Sánchez-Valdes S, Ortega-Ortiz H, Ramos-de Valle LF, et al. Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J Appl Polym Sci. 2009;111(2):953–962. doi:10.1002/app.29051
  • Wang L, Periyasami G, Aldalbahi A, et al. The antimicrobial activity of silver nanoparticles biocomposite films depends on the silver ions release behaviour. Food Chem. 2021;359:29859. doi:10.1016/j.foodchem.2021.129859
  • Eze N, Jayeoye J, Eze RC. Construction, characterization and application of locust bean gum/Phyllanthus reticulatus anthocyanin-based plasmonic silver nanocomposite for sensitive detection of ferrous ions. Environ Res. 2023;228:115864. doi:10.1016/j.envres.2023.115864
  • Eze N, Ovatlarnporn C, Jayeoye J, et al. One-pot biofabrication and characterization of Tara gum/Riceberry phenolics–silver nanogel: a cytocompatible and green nanoplatform with multifaceted biological applications. Int J Biol Macromol. 2022;206:521–533. doi:10.1016/j.ijbiomac.2022.02.140
  • Eze N, Tola J, Nwabor F, et al. Centella asiatica phenolic extract-mediated bio-fabrication of silver nanoparticles: characterization, reduction of industrially relevant dyes in water and antimicrobial activities against foodborne pathogens. RSC Adv. 2019;9(65):37957–37970. doi:10.1039/C9RA08618H