4
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Endo/exothermic analysis of Casson and Maxwell quadra hybrid nanofluid flow configured by pollutant concentration with thermal and solute jump

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2382940 | Received 28 Mar 2024, Accepted 17 Jul 2024, Published online: 25 Jul 2024

References

  • Paul A, Das TK, Nath JM. Numerical investigation on the thermal transportation of MHD Cu/Al2O3-H2O Casson-hybrid-nanofluid flow across an exponentially stretching cylinder incorporating heat source. Phys Scr. 2022;97:085701. doi:10.1088/1402-4896/ac7981
  • Bharathi V, Prakash J, Tripathi D, et al. Heat transfer in EMHD hyperbolic tangent ternary hybrid nanofluid flow over a Darcy-Forchheimer porous wedge surface: a numerical simulation. Nanomater Nanoliq Appl Energ Environ. 2023: 249–279. doi:10.1007/978-981-99-6924-1_13
  • Paul A, Nath JM, Das TK. Thermally stratified Cu–Al2O3/water hybrid nanofluid flow with the impact of an inclined magnetic field, viscous dissipation and heat source/sink across a vertically stretching cylinder. ZAMM J Appl Math Mech. 2023; 104: e202300084. doi:10.1002/zamm.202300084
  • Awan AU, Ali B, Shah SAA, et al. Numerical analysis of heat transfer in Ellis hybrid nanofluid flow subject to a stretching cylinder. Case Stud Therm Eng. 2023;49:103222. doi:10.1016/j.csite.2023.103222
  • Almeshaal MA, Majeed A, Ijaz N, et al. Numerical simulations for thermally developed double diffusion flow of nanoparticles due to elongated cylinder with multiple slip effects. Appl Energy Storage Syst Num Heat Transf Part A Appl. 2024: 1–16. doi:10.1080/10407782.2024.2321519
  • Alwawi FA, Hamarsheh AS, Alkasasbeh HT, et al. Mixed convection flow of magnetised Casson nanofluid over a cylindrical surface. Coatings. 2022;12(3):296. doi:10.3390/coatings12030296.
  • Algehyne EA, Alamrani FM, Khan A, et al. On thermal distribution of MHD mixed convective flow of a Casson hybrid nanofluid over an exponentially stretching surface with impact of chemical reaction and ohmic heating. Colloid Polym Sci. 2024; 302: 503–516. doi:10.1007/s00396-023-05214-x
  • Paul A, Sarma N, Patgiri B. Thermal and mass transfer analysis of Casson-Maxwell hybrid nanofluids through an unsteady horizontal cylinder with variable thermal conductivity and Arrhenius activation energy. Numer Heat Transf Part A Appl. 2023: 1–26. doi:10.1080/10407782.2023.2297000.
  • Nawaz M, Arif U. Numerical investigation on effects of entropy generation and dispersion of hybrid nanoparticles on thermal and mass transfer in MHD Maxwell fluid. J Therm Anal Calorim. 2022;147(23):13551–13560. doi:10.1007/s10973-022-11489-z.
  • Pan H, Yousaf A, Imran M, et al. Numerical simulation of Maxwell nanofluid with MHD and bio-convective flow passing through a stretching cylinder. Int J Thermofluids. 2023;20:100423. doi:10.1016/j.ijft.2023.100423.
  • Adhikari R, Das S. Biological transmission in a magnetised reactive Casson–Maxwell nanofluid over a tilted stretchy cylinder in an entropy framework. Chin J Phys. 2023;86:194–226. doi:10.1016/j.cjph.2023.10.008.
  • Shahzad F, Jamshed W, Safdar R, et al. Thermal analysis characterisation of solar-powered ship using Oldroyd hybrid nanofluids in parabolic trough solar collector: an optimal thermal application. Nanotechnol Rev. 2022;11(1):2015–2037. doi:10.1515/ntrev-2022-0108
  • Alkathiri AA, Jamshed W, Eid MR, et al. Galerkin finite element inspection of thermal distribution of renewable solar energy in presence of binary nanofluid in parabolic trough solar collector. Alexandr Eng J. 2022;61(12):11063–11076. doi:10.1016/j.aej.2022.04.036
  • Ouni M, Ladhar LM, Omri M, et al. Solar water-pump thermal analysis utilizing copper–gold/engine oil hybrid nanofluid flowing in parabolic trough solar collector: Thermal case study. Case Stud Therm Eng. 2022;30:101756. doi:10.1016/j.csite.2022.101756.
  • Nabwey HA, Reddy Minnam Reddy V, Suresh Babu R, et al. Enhanced heat transmission in hydrodynamic Maxwell and Jeffrey cylindrical film flows: a computational numerical simulation. Proc Inst Mech Eng Part E J Process Mech Eng. 2023;237(6):2457–2465. doi:10.1177/09544089221136439.
  • Sarve D, Gaur PK, Sharma VK. Numerical simulation for activation energy impact on Darcy-Forchheimer flow of Casson fluid suspended with nano particles over a stretching cylinder. Sci Technol Asia. 2021; 26: 106–114. https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/245885
  • Majeed A, Zeeshan A, Ahmad QA, et al. Theoretical investigation of Arrhenius activation energy on radiative magneto-hydrodynamic nanofluid flow with heat and mass transfer over a porous cylinder. Waves Random Complex Media. 2023: 1–22. doi:10.1080/17455030.2023.2290652
  • Sajid T, Al Mesfer MK, Jamshed W, et al. Endo/exothermic chemical processes influences of tri-hybridity nanofluids flowing over wedge with convective boundary constraints and activation energy. Results Phys. 2023;51:106676. doi:10.1016/j.rinp.2023.106676
  • Li S, Saadeh R, Madhukesh JK, et al. Aspects of an induced magnetic field utilisation for heat and mass transfer ferromagnetic hybrid nanofluid flow driven by pollutant concentration. Case Stud Therm Eng. 2024;53:103892. doi:10.1016/j.csite.2023.103892
  • Chu YM, Bashir S, Ramzan M, et al. Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math Methods Appl Sci. 2023;46(10):11568–11582. doi:10.1002/mma.8234.
  • Sajid T, Pasha AA, Jamshed W, et al. Radiative and porosity effects of trihybrid Casson nanofluids with Bödewadt flow and inconstant heat source by Yamada-Ota and Xue models. Alexandr Eng J. 2023;66:457–473. doi:10.1016/j.aej.2022.11.009.
  • Mahmood Z, Rafique K, Khan U, et al. Analysis of mixed convective stagnation point flow of hybrid nanofluid over sheet with variable thermal conductivity and slip Conditions: a model-based study. Int J Heat Fluid Flow. 2024;106:109296. doi:10.1016/j.ijheatfluidflow.2024.109296.
  • Wang CY. Fluid flow due to a stretching cylinder. Phys Fluids. 1988;31(3):466–468. doi:10.1063/1.866827.
  • Ishak A, Nazar R, Pop I. Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Appl Math Model. 2008;32(10):2059–2066. doi:10.1016/j.apm.2007.06.036.
  • Alshahrani S, Ahammad NA, Bilal M, et al. Numerical simulation of ternary nanofluid flow with multiple slip and thermal jump conditions. Front Energy Res. 2022;10:967307. doi:10.3389/fenrg.2022.967307.
  • Vaidya H, Prasad KV, Tripathi D, et al. Viscoplastic hybrid nanofluids flow through vertical stenosed artery. BioNanoScience. 2023;13(4):2348–2370. doi:10.1007/s12668-023-01213-y
  • Hussain SM, Majeed A, Ijaz N, et al. Heat transfer in three dimensional micropolar based nanofluid with electromagnetic waves in the presence of eukaryotic microbes. Alexandr Eng J. 2024;94:339–353. doi:10.1016/j.aej.2024.03.034
  • Khan SU, Majeed A, Aziz S. Thermal prediction of rotatory multiwall carbon nanotubes subject to convective boundary conditions and slip effects: implicit finite difference simulations. Numer Heat Transf Part B Fundament. 2024: 1–14. doi:10.1080/10407790.2024.2306274.
  • Upreti H, Prakash J, Usman I, et al. Thermal analysis of 3D Darcy–Forchheimer flow of SWCNT–MWCNT/sodium alginate on Riga plate. J Therm Anal Calorim. 2024; 149: 3891–3911. doi:10.1007/s10973-024-12975-2
  • Ahmed F, Akbar NS, Tripathi D. Numerically hydrothermal fully developed forced convective hybrid nanofluid flow through annular sector duct. Mod Phys Lett B. 2024;38(08):2450029. doi:10.1142/S0217984924500295.