152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A hybrid maintenance policy for a protection system under internal degradation and shocks: a case study in a steel industry

, , &
Received 06 Mar 2023, Accepted 03 Sep 2023, Published online: 16 Sep 2023

References

  • Abbassi, R., Khan, F., Garaniya, V., Chai, S., Chin, C., & Hossain, K. A. (2015). An integrated method for human error probability assessment during the maintenance of offshore facilities. Process Safety and Environmental Protection, 94(C), 172–179. https://doi.org/10.1016/j.psep.2015.01.010
  • Alberti, A. R., & Cavalcante, C. A. V. (2020). A two-scale maintenance policy for protection systems subject to shocks when meeting demands. Reliability Engineering & System Safety, 204, 107118. https://doi.org/10.1016/j.ress.2020.107118
  • Alberti, A. R., Cavalcante, C. A. V., Scarf, P., & Silva, A. L. O. (2018). Modelling inspection and replacement quality for a protection system. Reliability Engineering & System Safety, 176, 145–153. https://doi.org/10.1016/j.ress.2018.04.002
  • Appoh, F., Yunusa-Kaltungo, A., & Kumar Sinha, J. (2021). Hybrid adaptive model to optimise components replacement strategy: A case study of railway brake blocks failure analysis. Engineering Failure Analysis, 127, 127. https://doi.org/10.1016/j.engfailanal.2021.105539
  • Ben Mabrouk, A., Chelbi, A., Tlili, L., & Radhoui, M. (2020). A quasi-optimal inspection strategy for leased equipment. International Journal of Production Research, 58(3), 878–892. https://doi.org/10.1080/00207543.2019.1602743
  • Berrade, M. D., Cavalcante, C. A. V., & Scarf, P. A. (2012). Maintenance scheduling of a protection system subject to imperfect inspection and replacement. European Journal of Operational Research, 218(3), 716–725. https://doi.org/10.1016/j.ejor.2011.12.003
  • Berrade, M. D., Cavalcante, C. A. V., & Scarf, P. A. (2013). Modelling imperfect inspection over a finite horizon. Reliability Engineering & System Safety, 111, 18–29. https://doi.org/10.1016/j.ress.2012.10.003
  • Berrade, M. D., Scarf, P. A., & Cavalcante, C. A. V. (2015). Some insights into the effect of maintenance quality for a protection system. IEEE Transactions on Reliability, 64(2), 661–672. https://doi.org/10.1109/TR.2015.2417431
  • Berrade, M. D., Scarf, P. A., Cavalcante, C. A. V., & Dwight, R. A. (2013). Imperfect inspection and replacement of a system with a defective state: A cost and reliability analysis. Reliability Engineering & System Safety, 120, 80–87. https://doi.org/10.1016/j.ress.2013.02.024
  • Cavalcante, C. A. V., & Lopes, R. S. (2014). Opportunistic maintenance policy for a system with hidden failures: A multicriteria approach applied to an emergency diesel generator. Mathematical Problems in Engineering, 2014, 1–11. https://doi.org/10.1155/2014/157282
  • Cavalcante, C. A. V., Scarf, P. A., & Berrade, M. D. (2019). Imperfect inspection of a system with unrevealed failure and an unrevealed defective state. IEEE Transactions on Reliability, 68(2), 764–775. https://doi.org/10.1109/TR.2019.2897048
  • Cha, J. H., & Finkelstein, M. (2016). On some mortality rate processes and mortality deceleration with age. Journal of Mathematical Biology, 72(1–2), 331–342. https://doi.org/10.1007/s00285-015-0885-0
  • Cha, J. H., Finkelstein, M., & Levitin, G. (2018). Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process. European Journal of Operational Research, 266(1), 122–134. https://doi.org/10.1016/j.ejor.2017.09.021
  • Cha, J. H., & Mi, J. (2007). Study of a stochastic failure model in a random environment. Journal of Applied Probability, 44(1), 151–163. https://doi.org/10.1239/jap/1175267169
  • Chatterjee, D., & Sarkar, J. (2022). Optimal replacement policies for systems under sporadic shocks and healing impetus. Quality Technology & Quantitative Management, 19(5), 648–664. https://doi.org/10.1080/16843703.2022.2051846
  • Chen, Y. L. (2012). A bivariate optimal imperfect preventive maintenance policy for a used system with two-type shocks. Computers & Industrial Engineering, 63(4), 1227–1234. https://doi.org/10.1016/j.cie.2012.08.003
  • Cui, L., Chen, Z., & Gao, H. (2018). Reliability for systems with self-healing effect under shock models. Quality Technology & Quantitative Management, 15(5), 551–567. https://doi.org/10.1080/16843703.2016.1264146
  • Finkelstein, M., & Gertsbakh, I. (2016). On preventive maintenance of systems subject to shocks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 230(2), 220–227. https://doi.org/10.1177/1748006X15624593
  • Fiosina, J., & Fiosins, M. (2011). Statistical estimation for a reliability model based on shot-noise processes in a case of small samples. Quality Technology & Quantitative Management, 8(4), 451–462. https://doi.org/10.1080/16843703.2011.11673270
  • Flage, R. (2014). A delay time model with imperfect and failure-inducing inspections. Reliability Engineering & System Safety, 124, 1–12. https://doi.org/10.1016/j.ress.2013.11.009
  • Gut, A. (1990). Cumulative shock models. Advances in Applied Probability, 22(2), 504–507. https://doi.org/10.2307/1427554
  • Hameed, A., Khan, F., & Ahmed, S. (2016). A risk-based shutdown inspection and maintenance interval estimation considering human error. Process Safety and Environmental Protection, 100, 9–21. https://doi.org/10.1016/j.psep.2015.11.011
  • Hashemi, M., Asadi, M., & Tavangar, M. (2022). On preventive maintenance scheduling for the systems exposed to aging and external shocks. Applied Stochastic Models in Business and Industry, 38(4), 590–608. https://doi.org/10.1002/asmb.2676
  • Huynh, K. T., Castro, I. T., Barros, A., & Bérenguer, C. (2012). Modeling age-based maintenance strategies with minimal repairs for systems subject to competing failure modes due to degradation and shocks. European Journal of Operational Research, 218(1), 140–151. https://doi.org/10.1016/j.ejor.2011.10.025
  • Jia, X., & Christer, A. H. (2002). A periodic testing model for a preparedness system with a defective state. IMA Journal of Management Mathematics, 13(1), 39–49. https://doi.org/10.1093/imaman/13.1.39
  • Jiao, Z., Gong, H., & Wang, Y. (2018). A D-S evidence theory-based relay protection system hidden failures detection method in smart grid. IEEE Transactions on Smart Grid, 9(3), 2118–2126. https://doi.org/10.1109/TSG.2016.2607318
  • Kabir, A. B. M. Z. (1987). A new graphic presentation of cost optimal age replacement policies. Reliability Engineering, 17(1), 59–71. https://doi.org/10.1016/0143-8174(87)90085-0
  • Kang, F., & Cui, L. (2022). Reliability analysis for systems with self-healing mechanism under two different types of cumulative shocks. Quality Technology & Quantitative Management, 19(4), 454–472. https://doi.org/10.1080/16843703.2021.2021616
  • Korba, P., Huňady, R., Hovanec, M., Rácek, B., & Pavelka, P. (2021). Fatigue life analysis of an aircraft brake component to prevent damage and ensure operational safety. Engineering Failure Analysis, 129, 129. https://doi.org/10.1016/j.engfailanal.2021.105653
  • Lam, Y., & Zhang, Y. L. (2004). A shock model for the maintenance problem of a repairable system. Computers & Operations Research, 31(11), 1807–1820. https://doi.org/10.1016/S0305-0548(03)00121-7
  • Li, C., Qin, J., Li, J., & Hou, Q. (2016). The accident early warning system for iron and steel enterprises based on combination weighting and grey prediction model GM (1,1). Safety Science, 89, 19–27. https://doi.org/10.1016/j.ssci.2016.05.015
  • Lind, S., & Kivistö-Rahnasto, J. (2008). Utilization of external accident information in companies’ safety promotion - case: Finnish metal and transportation industry. Safety Science, 46(5), 802–814. https://doi.org/10.1016/j.ssci.2007.01.009
  • Meeuwsen, J. J., Kling, W. L., & Ploem, W. A. G. A. (1997). The influence of protection system failures and preventive maintenance on protection systems in distribution systems. IEEE Transactions on Power Delivery, 12(1), 125–132. https://doi.org/10.1109/61.568232
  • Noroozi, A., Khan, F., Mackinnon, S., Amyotte, P., & Deacon, T. (2014). Determination of human error probabilities in maintenance procedures of a pump. Process Safety and Environmental Protection, 92(2), 131–141. https://doi.org/10.1016/j.psep.2012.11.003
  • Park, S. T., & Yang, B. S. (2010). An implementation of risk-based inspection for elevator maintenance. Journal of Mechanical Science and Technology, 24(12), 2367–2376. https://doi.org/10.1007/s12206-010-1004-1
  • Rafiei, M., Khooban, M. H., Igder, M. A., & Boudjadar, J. (2020). A novel approach to overcome the limitations of reliability centered maintenance implementation on the smart grid distance protection system. IEEE Transactions on Circuits & Systems II: Express Briefs, 67(2), 320–324. https://doi.org/10.1109/TCSII.2019.2905639
  • Rodrigues, A. J. S., Cavalcante, C. A. V., & Alberti, A. R. (2023). A multicriteria model to support the selection of inspection service providers based on the delay time model. International Transactions in Operational Research, 30(6), 3554–3577. https://doi.org/10.1111/itor.13274
  • Ross, S. M. (1996). Stochastic processes. In The journal of the operational research society (issue 6). Wiley. https://doi.org/10.2307/3010294
  • The SciPy community. (2022). minimize(method=’SLSQP’). https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
  • Shafiee, M., Finkelstein, M., & Bérenguer, C. (2015). An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks. Reliability Engineering & System Safety, 142, 463–471. https://doi.org/10.1016/j.ress.2015.05.001
  • Sheu, S. H., Liu, T. H., Sheu, W. T., Ke, J. C., & Zhang, Z. G. (2023). Bivariate replacement policy for a system subject to shocks. Quality Technology & Quantitative Management. https://doi.org/10.1080/16843703.2023.2165287
  • Song, S., Coit, D. W., & Feng, Q. (2016). Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects. IIE Transactions, 48(8), 720–735. https://doi.org/10.1080/0740817X.2016.1140922
  • Tavangar, M., & Hashemi, M. (2022). Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks. Reliability Engineering & System Safety, 218, 108170. https://doi.org/10.1016/j.ress.2021.108170
  • Vaurio, J. K. (1999). Availability and cost functions for periodically inspected preventively maintained units. Reliability Engineering & System Safety, 63(2), 133–140. https://doi.org/10.1016/S0951-8320(98)00030-1
  • Wang, J., Ge, D., Chen, S., Wang, Z., Guo, D., Xu, Z., Wang, J., & Wang, F. (2021). Maintenance strategy design for nuclear reactors safety systems using a constraint particle swarm evolutionary methodology. Annals of Nuclear Energy, 150, 107878. https://doi.org/10.1016/j.anucene.2020.107878
  • Wang, J., Han, X., Zhang, Y. A., & Bai, G. (2021). Modeling the varying effects of shocks for a multi-stage degradation process. Reliability Engineering & System Safety, 215, 107925. https://doi.org/10.1016/j.ress.2021.107925
  • World Steel Association. (2022). World steel in figures 2022. https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/
  • Xu, Q., & Xu, K. (2020). Statistical analysis and prediction of fatal accidents in the metallurgical industry in China. International Journal of Environmental Research and Public Health, 17(11), 3790. https://doi.org/10.3390/ijerph17113790
  • Yang, L., Ma, X., Peng, R., Zhai, Q., & Zhao, Y. (2017). A preventive maintenance policy based on dependent two-stage deterioration and external shocks. Reliability Engineering & System Safety, 160, 201–211. https://doi.org/10.1016/j.ress.2016.12.008
  • Zhao, L., Li, X., Ni, M., Li, T., & Cheng, Y. (2019). Review and prospect of hidden failure: Protection system and security and stability control system. Journal of Modern Power Systems and Clean Energy, 7(6), 1735–1743. https://doi.org/10.1007/s40565-015-0128-9
  • Zhao, X., Chai, X., Sun, J., & Qiu, Q. (2021). Optimal bivariate mission abort policy for systems operate in random shock environment. Reliability Engineering & System Safety, 205, 107244. https://doi.org/10.1016/j.ress.2020.107244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.