300
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Global performance indicator (GPI) approach to predict the steel fiber reinforced concrete strength with error analysis

, , & ORCID Icon
Pages 123-137 | Received 25 Oct 2023, Accepted 28 Dec 2023, Published online: 19 Jan 2024

References

  • Tountanji H, Bayasi Z. Effects of manufacturing techniques on the flexural behavior of steel fiber-reinforced concrete. Cement Concr Res. 1997;28(1):115–124. doi: 10.1016/S0008-8846(97)00213-5
  • Khuntia M, Stojadinovic B, Goel SC. Shear strength of normal and high-strength fibre reinforced concrete beams without stirrups. Struct J. 1999;96:282–289.
  • Vandewalle L, Nemegeer D, Balazs L, et al. RILEM TC162-TDF: test and design methods for steel fibre reinforced concrete: uni-axial tension test. Mater Struct. 2001;34:3–6.
  • Robins P, Austin S, Chandler J. Flexural strain and crack width measurementof steel-fibre-reinforced concrete by optical grid and electrical gauge methods. Cement & Concrete Res. 2001;31(5):719–729. doi: 10.1016/S0008-8846(01)00465-3
  • Kwak YK, Eberhard MO, Kim W-S, et al. Shear strength of steel fibre-reinforced concrete beams without stirrups. ACI Struct J. 2002;99:530–538.
  • Song PS, Hwang S. Mechanical properties of high-strength steel fiber-reinforced concrete. Constr Build Mater. 2004;18(9):669–673. doi: 10.1016/j.conbuildmat.2004.04.027
  • Neves RD, Fernandes de Almeida JCO. Compressive behaviour of steel fibre reinforced concrete. Struct Concr. 2005;6(1):1–8. doi: 10.1680/stco.2005.6.1.1
  • Di Prisco M, Plizzari G, Vandewalle L, et al. Fibre reinforced concrete: new design perspectives. Mater Struct. 2009;42(9):1261–1281. doi: 10.1617/s11527-009-9529-4
  • Dinh HH, Parra-Montesinos GJ, Wight JK. Shear behavior of steel fibre-reinforced concrete beams without stirrup reinforcement. J ACI Struct. 2010;107(5):597–606. doi: 10.14359/51663913
  • Kaklauskas G, Gribniakand V, Bačinskas D. Inverse technique for deformational analysis of concrete beams with ordinary reinforcement and steel fibres. Procedia Eng. 2011;14:1439–1446. doi: 10.1016/j.proeng.2011.07.181
  • Gribniak V, Kaklauskas G, Kwan AKH, et al. Deriving stress-strain relationships for steel fibre concrete in tension from tests of beams with ordinary reinforcement. Eng Struct. 2012;42:387–395. doi: 10.1016/j.engstruct.2012.04.032
  • Minelli F, Plizzari GA. On the effectiveness of steel fibres as shear reinforcement. Struct J. 2013;110:379–390.
  • diPrisco M, Colombo M, Dozio D. Dozio D fibre-reinforced concrete in fib model code 2010: principles, models and test validation. Struct Concr. 2013;14(4):342–361. doi: 10.1002/suco.201300021
  • Meskenas A, Gelazius V, Kaklauskas G, et al. A new technique for constitutive modelling of SFRC. Procedia Eng. 2013;57:762–766. doi: 10.1016/j.proeng.2013.04.096
  • MashfiqulIslama M, SumaiyaKhatun M, Rashed U, et al. Finite element analysis of steel fiber reinforced concrete (SFRC): validation of experimental shear capacities of beams. Procedia Engg. 2014;90:89–95. doi: 10.1016/j.proeng.2014.11.819
  • Despotovic M, Nedic V, Despotovic D, et al. Review and statistical analysis of different global solar radiation sunshine models. Renew Sustain Energy Rev. 2015;52:1869–1880. doi: 10.1016/j.rser.2015.08.035
  • Iqbal S, Ali A, Holschemacher K, et al. Mechanical properties of steel fber reinforced high strength lightweight self-compacting concrete (SHLSCC). Constr Build Mater. 2015b;98:325–333. doi: 10.1016/j.conbuildmat.2015.08.112
  • Wankhade RL, Landage AB, Konnur BA. Experimental investigation on combined effect of SBR and steel fiber on properties of concrete. Int J Eng Res. 2016;5(1):257–261.
  • Amin A, Foster SJ. Shear strength of steel fibre reinforced concrete beams with stirrups. Eng Struct. 2016;111:323–332. doi: 10.1016/j.engstruct.2015.12.026
  • Lee JH, Cho B, Choi E. Flexural capacity of fibre reinforced concrete with a consideration of concrete strength and fibre content. Constr Build Mater. 2017;138:222–231. doi: 10.1016/j.conbuildmat.2017.01.096
  • Yoo DY, Moon DY. Moon D-Y effect of steel fibres on the flexural behavior of RC beams with very low reinforcement ratios. Constr Build Mater. 2018;188:237–254. doi: 10.1016/j.conbuildmat.2018.08.099
  • Nguyen AP, Banh TT, Lee DK, et al. Design of multiphase carbon fibre reinforcement of crack existing concrete structures using topology optimization. Steel Compos Struct. 2018;29(5):635–645.
  • Mastali M, Dalvand A, Sattarifard AR, et al. Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fbers. Composites. 2018;151:186–200. doi: 10.1016/j.compositesb.2018.06.021
  • Konečný P, Ghosh P, Hrabová K, et al. Effective methodology of sustainability assessment of concrete mixtures. Mater Struct. 2020;53(4):98. doi: 10.1617/s11527-020-01535-3
  • Ziyue Z, Zhu Z, Yao W, et al. Accurate prediction of concrete compressive strength based on explainable features using deep learning. Constr Build Mater. 2022;329:127082. doi: 10.1016/j.conbuildmat.2022.127082
  • YiFei L, MaoSen C, Abdel Wahab M. Data-driven kriging model for predicting concrete compressive strength and parameter correlation analysis. In: Abdel Wahab M., editor. Proceedings of the 5th International Conference on Numerical Modelling in Engineering. Lecture Notes in Civil Engineering; Singapore: Springer; 2023; p. 311. doi: 10.1007/978-981-19-8429-7_11
  • Simalti A, Singh AP. Comparative study on performance of manufactured steel fiber and shredded tire recycled steel fiber reinforced self-consolidating concrete. Constr Build Mater. 2021;266:121102. doi: 10.1016/j.conbuildmat.2020.121102
  • Pathan MG, Wankhade RL, Shende AM, et al. Experimental analysis for performance of concrete with addition of steel fibres, SBR and polypropylene fibres. JurnalKejuruteraan. 2022;34(3):429–445. doi: 10.17576/jkukm-2022-34(3)-10
  • Islam N, Kashem A, Das P, et al. Prediction of high-performance concrete compressive strength using deep learning techniques. Asian J Civ Eng. 2023;25(1):327–341. doi: 10.1007/s42107-023-00778-z