311
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geopolymer cement composite containing agriculture solid wastes: mechanical and durability performance

, , &
Pages 365-384 | Received 20 Nov 2023, Accepted 06 Feb 2024, Published online: 19 Feb 2024

References

  • Gartner E, Hirao H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem Concr Res. 2015;78:126–142. doi:10.1016/j.cemconres.2015.04.012
  • Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631–649. doi:10.1007/s10653-015-9720-1
  • Josa A, Aguado A, Cardim A, et al. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cem Concr Res. 2007;37(5):781–788. doi:10.1016/j.cemconres.2007.02.004
  • Tosti L, van Zomeren A, Pels JR, et al. Technical and environmental performance of lower carbon footprint cement mortars containing biomass fly ash as a secondary cementitious material. Resour Conserv Recycl. 2018;134:25–33. doi:10.1016/j.resconrec.2018.03.004
  • Scrivener KL, John VM, Gartner EM. Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res. 2018;114:2–26. doi: 10.1016/j.cemconres.2018.03.015
  • Raheem AA, Adenuga OA Wood ash from bread bakery as partial replacement for cement in concrete. 2013 [cited 2020 Dec 7]. Available from: http://penerbit.uthm.edmy/ojs/index.php/IJSCET
  • Karim MR, Hashim H, Abdul Razak H, et al. Characterization of palm oil clinker powder for utilization in cement-based applications. Constr Build Mater. 2017;135:21–29. doi:10.1016/J.CONBUILDMAT.2016.12.158
  • Siang OJM, Hanifi RM, Nazahiyah AS, et al. Properties of sugarcane fiber on the strength of the normal and lightweight concrete. MATEC Web Conf. 2017;103:01021. doi: 10.1051/matecconf/201710301021
  • Ferronato N, Torretta V. Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health. 2019;16(6):1060. doi:10.3390/ijerph16061060
  • Abdel-Gawwad HA, Heikal EE, El-Didamony H, et al. Recycling of concrete waste to produce ready-mix alkali activated cement. Ceram Int. 2018;44(6):7300–7304. doi: 10.1016/j.ceramint.2018.01.042
  • Udoeyo FF, Dashibil PU. Sawdust ash as concrete material. J Mater Civ Eng. 2002;14(2):173–176. doi: 10.1061/(ASCE)0899-1561(2002)14:2(173)
  • Lozano FJ, Lozano R. Assessing the potential sustainability benefits of agricultural residues: biomass conversion to syngas for energy generation or to chemicals production. J Clean Prod. 2018;172:4162–4169. doi:10.1016/j.jclepro.2017.01.037
  • Moraes J, Font A, Soriano L, et al. New use of sugar cane straw ash in alkaliactivated materials: a silica source for the preparation of the alkaline activator. Constr Build Mater. 2018;171:611–621. doi:10.1016/j.conbuildmat.2018.03.230
  • Rattanachu P, Toolkasikorn P, Tangchirapat W, et al. Performance of recycled aggregate concrete with rice husk ash as cement binder. Cem Concr Compos. 2020;108:103533. doi: 10.1016/j.cemconcomp.2020.103533
  • Khan R, Jabbar A, Ahmad I, et al. Reduction in environmental problems using rice-husk ash in concrete. Constr Build Mater. 2012;30:360–365. doi:10.1016/j.conbuildmat.2011.11.028
  • Liew KM, Sojobi AO, Zhang L. Green concrete: prospects and challenges. Constr Build Mater. 2017;156:1063–1095. CrossRef. doi: 10.1016/j.conbuildmat.2017.09.008
  • Osei DY. Experimental assessment on coconut shells as aggregate in concrete. Int J Eng Sci Invention. 2013;2:7–11.
  • Sonawane YN, Chitte CJ. Waste coconut shell as a partial replacement of coarse aggregate in concrete mix-an experimental study. Int J Sci Res. 2016;5:649–651.
  • Fadel O, Hehal EE, Hashem FS, et al. Mechanical properties, resistance to fire and durability for sulfate ions of alkali activated cement made from blast furnace slag- fine metakaolin. Egy J Chem. 2020;63:4821–4831.
  • Zawrah M, Gado R, Khattab R. Optimization of slag content and properties improvement of metakaolin-slag geopolymer mixes. Open Mater Sci J. 2018;12(1):40–57. doi: 10.2174/1874088X01812010040
  • Abo-El-Enein SA, Hashem FS, Amin MS, et al. Physico-chemical characteristics of cementitious building materials derived from industrial solid wastes. Constr Build Mater. 2016;126 983–990. doi: 10.1016/j.conbuildmat.2016.09.112
  • Shekhovtsova J, Zhernovsky I, Kovtun M, et al. Estimation of fly ash reactivity for use in alkali-activated cements - a step towards sustainable building material and waste utilization. J Cle Prod. 2018;178:22–33. doi:10.1016/j.jclepro.2017.12.270
  • Robayo RA, Mulford A, Munera J, et al. Alternative cements based on alkali-activated red clay brick waste. Constr Build Mater. 2016;128 163–169. doi: 10.1016/j.conbuildmat.2016.10.023
  • Hashem FS, Hekal EE, Abdel Naby MM, et al. Mechanical properties and durability performance against fire, gamma ray and bio-fouling of hardened Portland cement pastes incorporating lead bearing wastes. Mater Chem Phys. 2021;272:272 124–997. doi: 10.1016/j.matchemphys.2021.124997
  • Hassan A, Arif M, Shariq M. Use of geopolymer concrete for a cleaner and sustainable environment – a review of mechanical properties and microstructure. J Clean Prod. 2019;223:704–728. doi:10.1016/j.jclepro.2019.03.051
  • Selim FA, Hashem FS, Amin MS. Mechanical, micro-structural and acid resistance aspects of improved hardened Portland cement pastes incorporating marble dust and fine kaolinite sand. Constr Build Mater. 2020;251:118–992. doi:10.1016/j.conbuildmat.2020.118992
  • Abdel-Gawwad HA, Heikal M, Mohammed MS, et al. Sustainable disposal of cement kiln dust in the production of cementitious materials. J Cle Prod. 2019;232:1218–1229. doi:10.1016/j.jclepro.2019.06.016
  • Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkaliactivated slag concrete to acid attack. Cem Concr R. 2003;33(10):1607–1611. doi:10.1016/S0008-8846(03)00125-X
  • Deja J, Malolepszy J. Resistance of alkali-activated slag mortars to chloride solution. Spec Public. 1989;114:1547–1564.
  • Nazari A, Riahi S. Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Mater Des. 2011;32(7):3966–3979. doi:10.1016/j.matdes.2011.01.064
  • Madandoust R, Mohseni E, Mousavi SY, et al. An experimental investigation on the durability of self-compacting mortar containing nano-SiO2, nano-Fe2O3 and nano-CuO. Constr Build Mater. 2015;86:44–50. doi:10.1016/j.conbuildmat.2015.03.100
  • Amin MS, El-Gamal SMA, Hashem FS. Fire resistance and mechanical properties of carbon nanotubes – clay, bricks wastes (homra) composites cement. Constr Build Mater. 2015;98:237–249. doi:10.1016/j.conbuildmat.2015.08.074
  • El-Gamal SMA, Hashem FS, Amin MS. Influence of carbon nano tubes, nanosilica and nano-metakaolin on some morphological-mechanical properties of oil well cement pastes subjected to elevated water curing temperature and regular room air curing temperature. Constr Build Mater. 2017;146:531–546. doi:10.1016/j.conbuildmat.2017.04.124
  • Amin MS, El-Gamal SMA, Hashem FS. Effect of addition of nano-magnetite on the hydration characteristics of hardened Portland cement and high slag cement pastes. J Ther Anal Cal. 2012. doi: 10.1007/s10973-012-2663-1
  • Hashem FS. Adsorption of methylene blue from aqueous solutions using Fe3O4/bentonite nanocomposite. Hydrol Curr Res. 2013;3(5):143.
  • C. ASTM, 191. Standard test method for time of setting of hydraulic cement by vicat needle. USA: ASTM International; 2004.
  • ASTM. C109-standard test method for compressive strength of hydraulic cement mortars. West Conshohocken, PA: ASTM International; 2008.
  • Hashem FS, Razek TA, Mashout HA. Rubber and plastic wastes as alternative refused fuel in cement industry. Constr Build Mater. 2019;212:275–282. doi:10.1016/j.conbuildmat.2019.03.316
  • Mashout HA, Razek TA, Amin MS, et al. Performance of nano titania-reinforced slag/basalt geopolymer composites. J Eng Appl Sci. 2023;70(1):106. doi: https://doi.org/10.1186/s44147-023-00278-6
  • Hashem FS, Amin MS, El-Gamal SMA. Improvement the acid resistance of Portland cement pastes using rice husk ash and cement kiln dust as additives. J Ther Anal Cal. 2012;111(2):1391–1398. doi: 10.1007/210973-012-2458-4
  • Anjaneyulu CM, Malikarjuna M, Prasad JV. Impact of nano titanium dioxide on geopolymer concrete. Inter J Res Pub Rev. 2021;2(12):484–493.
  • Ramadan M, Habib A, Hazem MM, et al. Synergetic effects of hydrothermal treatment on the behavior of toxic sludge-modified geopolymer: immobilization of cerium and lead, textural characteristics, and mechanical efficiency. Contr Build mater. 2023;367(27):130249. doi: 10.1016/j.conbuildmat.2022.130249
  • Hazem M, Hashem FS, Amin MS, et al. Mechanical and microstructure characteristics development of hardened oil well cement pastes incorporating fly ash and silica fume at elevated temperature. J Taibah Univer Sci. 2020;14(1):155–167. doi: 10.1080/16583655.2020.1711998
  • Hajimohammadi A, Provis JL, van Deventer JSJ. Time-resolved and spatially resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation. J Colloid Inter Sci. 2011;357(2):384–392. doi: 10.1016/j.jcis.2011.02.045
  • Alsubari B, Shafigh P, Ibrahim Z, et al. Properties of eco-friendly self-compacting concrete containing modified treated palm oil fuel ash. Constr Build Mater. 2018;158:742–754. doi:10.1016/j.conbuildmat.2017.09.174
  • Heikal M, Zaki ME, Ibrahim SM. Characterization, hydration, durability of nano-Fe2O3-composite cements subjected to sulphates and chlorides media. Constr Build Mater. 2021;1(269):121310. doi:10.1016/j.conbuildmat.2020.121310
  • Abo-El-Enein S, El-Hosiny F, El-Gamal S, et al. Gamma radiation shielding, fire resistance and physicochemical characteristics of Portland cement pastes modified with synthesized Fe2O3 and ZnO nanoparticles. Constr Build Mater. 2018;173:687–706. doi:10.1016/j.conbuildmat.2018.04.071
  • Gominˇsek T, Lubej A, Pohar C. Continuous precipitation of calcium sulfate dihydrate from waste sulfuric acid and lime. J Chem Technol Biotechnol. 2005;80(8):939–947. doi: 10.1002/jctb.1266
  • Allahverdi A, Skvara F. ´ sulfuric acid attack on hardened paste of geopolymer cements part 1. Mechanism of corrosion at relatively high concentrations. Cer Sil. 2005;49:225–229.
  • Türker HT, Balçikanli M, Durmuş İH, et al. Microstructural alteration of alkali activated slag mortars depend on exposed high temperature level. Constr Build Mater. 2016;104:169–180. doi:10.1016/j.conbuildmat.2015.12.070
  • Mahmoud A, Kishar EA, Ahmed DA. Resistance of alkali activated slag to sulphate attack and elevated temperatures. J Scient Rese Sci. 2018;35(1):315–329. doi:10.21608/jsrs.2018.25530
  • Nasr D, Pakshir AH, Ghayour H. The influence of curing conditions and alkaline activator concentration on elevated temperature behavior of alkali activated slag (AAS) mortars. Constr Build Mater. 2018;190:108–119. doi:10.1016/j.conbuildmat.2018.09.099
  • Bernal SA, Provis JL, Rose V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem Concr Compos. 2011;33(1):46–54. doi:10.1016/j.cemconcomp.2010.09.004
  • Abdel-Gawwad HA, Mohammed MS, Heikal M. Ultralightweight porous materials fabrication and hazardous lead-stabilization through alkali-activation/sintering of different industrial solid wastes. J Clean Prod. 2020;244:118742. doi:10.1016/j.jclepro.2019.118742
  • Abubakar AU, Baharudin KS. Properties of concrete using tanjung bin power plant coal bottom ash and fly ash. Int J Sustain Constr Eng Technol. 2012;3:56–69.