301
Views
0
CrossRef citations to date
0
Altmetric
Articles

A numerical method to detect soft tissue injuries from tissue displacements

&
Pages 155-177 | Received 24 Aug 2013, Accepted 30 Jan 2014, Published online: 14 Mar 2014

References

  • Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imag. 1991;13:111–134.
  • Ophir J, Alam S, Garra B, Kallel F, Konofagou E, Krouskop T, Merritt C, Righetti R, Souchon R, Srinivasan S, Varghese T. Elastography: imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrasonics. 2002;29:155–171. doi: 10.1007/BF02480847.
  • Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, Pennanen MF. Elastography of breast lesions: initial clinical results. Radiology. 1997;202:79–86. Available from: http://radiology.rsna.org/content/202/1/79.full.pdf+html.
  • Castéra L, Vergniol J, Foucher J, Le Bail B, Chanteloup E, Haaser M, Darriet M, Couzigou P, de Ldinghen V. Prospective comparison of transient elastography, fibrotest, apri, and liver biopsy for the assessment of fibrosis in chronic hepatitis c. Gastroenterology. 2005;138:343–350.
  • De Zordo T, Fink C, Feuchtner G, Smekal V, Reindl M, Klauser A. Real-time sonoelastography findings in healthy achilles tendons. AJR Am. J. Roentgenol. 2009;193:W134–W138.
  • De Zordo T, Chhem R, Smekal V, Feuchtner G, Reindl M, Fink C, Faschingbauer R, Jaschke W, Klauser SA. Real-time sonoelastography: Findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall in der Medizin. 2010;31:394–400.
  • Drakonaki E, Allen G, Wilson D. Real-time ultrasound elastography of the normal achilles tendon: reproducibility and pattern description. Clin. Radiol. 2009;64:1196–1202.
  • Klauser A, Faschingbauer R, Jaschke W. Is sonoelastography of value in assessing tendons? Semin. Musculoskel. Radiol. 2010;14:323–333.
  • Kuo PL, Li PC, Shun CT, Lai JS. Strain measurements of rabbit achilles tendons by ultrasound. Ultrasound Med. Biol. 1999;25:1241–1250.
  • Lalitha P, Reddy M, Reddy J. Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J. Radiol. 2010;12:365–375.
  • Sconfienza L, Silvestri E, Cimmino M. Sonoelastography in the evaluation of painful achilles tendon in amateur athletes. Clin. Exp. Rheumatol. 2010;28:373–378.
  • Kapoor A, Sandhu HS, Sandhu PS, Kapoor A, Mahajan G, Kumar A. Realtime elastography in plantar fasciitis: comparison with ultrasonography and MRI. Curr. Orthopedic Pract. 2010;21:600–608.
  • Wu CH, Chang KV, Mio S, Chen WS, Wang TG. Sonoelastography of the plantar fascia. Radiology. 2011;259:502–507. Available from: http://radiology.rsna.org/content/259/2/502.full.pdf+html.
  • De Zordo T, Lill S, Fink C, Feuchtner G, Jaschke W, Bellmann-Weiler R, Klauser A. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. AJR Am. J. Roentgenol. 2009;193:180–185.
  • Reddy J. An introduction to continuum mechanics with applications. New York (NY): Cambridge University Press; 2008.
  • Doyley MM, Srinivasan S, Pendergrass SA, Wu Z, Ophir J. Comparative evaluation of strain-based and model-based modulus elastography. Ultrasound Med. Biol. 2005;31:787–802.
  • Oberai AA, Gokhale NH, Feijóo GR. Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Probl. 2003;19:297.
  • Oberai AA, Gokhale NH, Doyley MM, Bamber JC. Evaluation of the adjoint equation based algorithm for elasticity imaging. Phys. Med. Biol. 2004;49:2955–2974.
  • Frey H. Realtime-elastographie. Der Radiologe. 2003;43:850–855.
  • Shore SW, Barbone PE, Oberai AA, Morgan EF. Transversely isotropic elasticity imaging of cancellous bone. J. Biomech. Eng. 2011;133:061002. 11p.
  • Gokhale NH, Barbone PE, Oberai AA. Solution of the nonlinear elasticity imaging inverse problem: the compressible case. Inverse Probl. 2008;24:045010. 26p.
  • Cowin S, Doty S. Tissue mechanics. New York (NY): Springer; 2007.
  • Barbone PE, Bamber J. Quantitative elasticity imaging: what can and cannot be inferred from strain images. Phys. Med. Biol. 2002;47:2147–2164.
  • Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. British J. Radiol. 1019;2012:1435–1445.
  • Kadour M, Noble J. Assisted-freehand ultrasound elasticity imaging. IEEE Trans. Ultrasonics Ferroelec. Freq. Control. 2009;56:36–43.
  • Jolliffe IT. Principal component analysis. New York (NY): Springer-Verlag; 1986.
  • Cootes T, Taylor C, Cooper D, Graham J. Active shape models – their training and application. Comput. Vision Image Und. 1995;61:38–59.
  • Knapp AW. Basic real analysis. Chapter XII. Boston: Birkhauser; 2005. p. 520–551
  • Zitová B, Flusser J. Image registration methods: a survey. Image Vision Comput. 2003;21:977–1000.
  • Yoo J, Yi S, Kim J. The geometry of patella and patellar tendon measured on knee MRI. Surg. Radiol. Anat. 2007;29:623–628.
  • Untaroiu C, Darvish K, CrandallJ, DengB, WangJT. Characterization of the lower limb soft tissues in pedestrian finite element models 19th International Technical Conference on the Enhanced Safety of Vehicles Conference; Washington, DC; 2005.
  • Weiss JA, Maker BN, Govindjee S. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput. Meth. Appl. Mech. Eng. 1996;135:107–128.
  • Calvo B, Peña E, Martinez M, Doblaré M. An uncoupled directional damage model for fibred biological soft tissues. Int. J. Numer. Meth. 2007;69:2036–2057.
  • Kallel F, Ophir J. A least-squares strain estimator for elastography. Ultrasonic Imag. 1997;19:195–208.
  • Bilgen M, Insana M. Predicting target detectability in acoustic elastography. IEEE Int. Ultrasonics Symp. 1997;2:1427–1430.
  • Pellot-Barakat C, Frouin F, Insana MF, Herment A. Ultrasound elastography based on multiscale estimations of regularized displacement fields. IEEE Trans. Med. Imag. 2004;23:153–163.
  • Doyley M, Meaney P, Bamber J. Evaluation of an iterative reconstruction method for quantitative elastography. Phys. Med. Biol. 2000;45:1521.
  • Park GY, Kwon DR. Application of real-time sonoelastography in musculoskeletal diseases related to physical medicine and rehabilitation. Am. J. Phys. Med. & Rehabil. 2011;11:875–886.
  • Klauser A, Peetrons P. Developments in musculoskeletal ultrasound and clinical applications. Skeletal Radiol. 2010;39:1061–1071.
  • Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol. 2011;52:99–105.
  • Srinivasan S, Dubey N. Re: Musculoskeletal applications of elastography: a pictorial essay of our initial experience. Korean J. Radiol. 2011;12:646–647.
  • Lv F, Tang J, Luo Y, Ban Y, Wu R, Tian J, Yu T, Xie X, Li T. Muscle crush injury of extremity: quantitative elastography with supersonic shear imaging. Ultrasound Med. Biol. 2012;38:795–802. Available from: http://www.sciencedirect.com/science/article/pii/S030156291200018X.
  • Uffmann K, Maderwald S, Ajaj W, Galban CG, Mateiescu S, Quick HH, Ladd ME. In vivo elasticity measurements of extremity skeletal muscle with mr elastography. NMR Biomed. 2004;17:181–190. Available from: http://dx.doi.org/10.1002/nbm.887.
  • Ringleb SI, Bensamoun SF, Chen Q, Manduca A, An KN, Ehman RL. Applications of magnetic resonance elastography to healthy and pathologic skeletal muscle. J. Magn. Resonance Imag. 2007;25:301–309. Available from: http://dx.doi.org/10.1002/jmri.20817.
  • Basford JR, Jenkyn TR, An KN, Ehman RL, Heers G, Kaufman KR. Evaluation of healthy and diseased muscle with magnetic resonance elastography. Arch. Phys. Med. Rehabil. 2002;83:1530–1536. Available from: http://www.sciencedirect.com/science/article/pii/S0003999302002460.
  • Dresner MA, Rose GH, Rossman PJ, Muthupillai R, Manduca A, Ehman RL. Magnetic resonance elastography of skeletal muscle. J. Magn. Resonance Imag. 2001;13:269–276.
  • Zhang ZJ, Fu SN. Shear elastic modulus on patellar tendon captured from supersonic shear imaging: Correlation with tangent traction modulus computed from material testing system and test-retest reliability. PloS one. 2013;8:e68216.
  • Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn achilles tendons a pilot study. J. Ultrasound Med. 2013;32:449–455.
  • Kot BCW, Zhang ZJ, Lee AWC, Leung VYF, Fu SN. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PloS one. 2012;7:e44348.
  • Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Mus. Nerve. 2010;42:438–441.
  • Gennisson JL, Catheline S, Chaffaï S, Fink M. Transient elastography in anisotropic medium: application to the measurement of slow and fast shear wave speeds in muscles. J. Acoustical Soc. Am. 2003;114:536.
  • Sabra KG, Conti S, Roux P, Kuperman W. Passive in vivo elastography from skeletal muscle noise. Appl. Phys. Lett. 2007;90:194101–194101.
  • Ammari H, Garapon P, Kang H, Lee H. A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements. Quart. Appl. Math. 2008;66:139–176.
  • Ammari H, Calmon P, Iakovleva E. Direct elastic imaging of a small inclusion. SIAM J. Imag. Sci. 2008;1:169–187.
  • Ammari H, Garnier J, Kang H, Lim M, Sølna K. Multistatic imaging of extended targets. SIAM J. Imag. Sci. 2012;5:564–600.
  • Ammari H, Garnier J, Jing W, Kang H, Lim M, Sølna K, Wang H. Mathematical and statistical methods for multistatic imaging. Lect. Notes Math. 2013;2098.
  • Ammari H, Bretin E, Garnier J, Jing W, Kang H, Wahab A. Localization, stability, and resolution of topological derivative based imaging functionals in elasticity. SIAM J. Imaging Sci. 2013;6:2174–2212.
  • Ammari H, BretinE, GarnierJ, WahabA. Time-reversal algorithms in viscoelastic media. Eur J Appl Math. 2013;24:565–600.
  • Egorov V, Kearney T, Pollak S, Rohatgi C, Sarvazyan N, Airapetian S, Browning S, Sarvazyan A. Differentiation of benign and malignant breast lesions by mechanical imaging. Breast Cancer Res. Treatment. 2009;118:67–80.
  • Belciug S, Lupsor M, Badea R. Features selection approach for non-invasive evaluation of liver fibrosis. Ann. Univ. Craiova Math. Comput. Sci. 2006;35:15–20.
  • Bosch JG, Mitchell SC, Lelieveldt BPF, Nijland F, Kamp O, Sonka M, Reiber JH. Automatic segmentation of echocardiographic sequences by active appearance motion models. IEEE Trans. Med. Imag. 2002;21:1374–1383.
  • Mitchell SC, Bosch JG, Bouldewijn PF, van der Geest RJ, Reiber JH, Sonka M. 3d active appearance models: segmentation and cardiac mr and ultrasound images. IEEE Trans. Med. Imag. 2002;21:1167–1178.
  • Săftoiu A, Vilmann P, Gorunescu F, Gheonea DI, Gorunescu M, Ciurea T, Popescu GL, Iordache A, Hassan H, Iordache S. Neural network analysis of dynamic sequences of eus elastography used for the differential diagnosis of chronic pancreatitis and pancreatic cancer. Gastrointest. Endoscopy. 2008;68:1086–1094.
  • Săftoiu A, Vilmann P, Gorunescu F, Janssen J, Hocke M, Larsen M, IglesiasGarcia J, Arcidiacono P, Will U, Giovannini M, Gheonea DI, Ciurea T and Gheorghe C. Efficacy of an artificial neural network based approach to endoscopic ultrasound elastography in diagnosis of focal pancreatic masses. Clin. Gastroenterol. Hepatol. 2012;10:84–90.e1.
  • Walker WF, Trahey GE. A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans. Ultrasonics Ferroelec. Freq. Control. 1995;42:301–308.
  • Hubert M, Engelen S. Robust pca and classification in biosciences. Bioinformatics. 2004;20:1728–1736. Available from: http://bioinformatics.oxfordjournals.org/content/20/11/1728.full.pdf+html.
  • Chen H, Shi H, Varghese T. Improvement of elastographic displacement estimation using a two-step cross-correlation method. Ultrasound Med. Biol. 2006;33: 48–56.
  • Chen L, Treece GM, Lindop JE, Gee AH, Prager RW. A hybrid displacement estimation method for ultrasonic elasticity imaging. IEEE Ultrasonics Ferroelec. Freq. Control Soc. 2010;57:866–882. Available from: http://bioinformatics.oxfordjournals.org/content/20/11/1728.full.pdf+html.
  • Goenezen S, Barbone P, Oberai AA. Solution of the nonlinear elasticity imaging inverse problem: The incompressible case. Comput. Meth. Appl. Mech. Eng. 2004;200:1406–1420.
  • Persson PO, Strang G. A simple mesh generator in matlab. SIAM Rev. 2010;46:329–345.
  • Chen L. ifem: an innovative finite element methods package matlab. Technical Report: University of California at Irvine; 2009.
  • Chen L. Short implementation of bisection in MATLAB. In: Jorgensen P, Shen X, Shu C-W, and Yan N, editors. Recent advances in computational sciences - selected papers from the international workship on computational sciences and its education. Hackensack (NJ): World Scientific; 2008: 318–332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.