366
Views
21
CrossRef citations to date
0
Altmetric
Articles

Identification of materials in a hyperbolic annular fin for a given temperature requirement

Pages 213-233 | Received 19 Jun 2014, Accepted 06 Feb 2015, Published online: 03 Mar 2015

References

  • Kern QD, Kraus DA. Extended surface heat transfer. New York, NY: McGraw-Hill; 1972.
  • Huang CH, Wang DM, Chen HM. Prediction of local thermal contact conductance in plate finned-tube heat exchangers. Inverse Prob. Sci. Eng. 1999;7:119–141.10.1080/174159799088027690
  • Kim S, Moon JH, Huang CH. An approximate solution of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. J. Phys. D: Appl. Phys. 2007;40:4382–4389.10.1088/0022-3727/40/14/038
  • Coşkun SB, Atay M. Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method. Appl. Therm. Eng. 2008;28:2345–2352.10.1016/j.applthermaleng.2008.01.012
  • Khani F, Raji MA, Nejad HH. Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Commun. Nonlinear Sci. Numer. Simulat. 2009;14:3327–3338.10.1016/j.cnsns.2009.01.012
  • Domairry G, Fazeli M. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Commun. Nonlinear Sci. Numer. Simulat. 2009;14:489–499.10.1016/j.cnsns.2007.09.007
  • Kundu B. Analytic method for thermal performance and optimization of an absorber plate fin having variable thermal conductivity and overall loss coefficient. Appl. Energy. 2010;87:2243–2255.10.1016/j.apenergy.2010.01.008
  • Hajmohammadi MR, Poozesh S, Nourazar SS. Constructal design of multiple heat sources in a square-shaped fin. Proc. Instn. Mech. Eng, E, J. Process Mech. Eng. 2012;226:324–336.10.1177/0954408912447720
  • Jaynes ET. The well-posed problem. Found. Phys. 1973;3:477–492.10.1007/BF00709116
  • Schweiger M, Arridge SR, Delpy DT. Application of the finite-element method for the forward and inverse models in optical tomography. J. Math. Imaging Vision. 1993;3:263–283.10.1007/BF01248356
  • Dobson BJ, Rider E. A review of the indirect calculation of excitation forces from measured structural response data. Proc. Inst. Mech. Eng. C, J. Mech. Eng. Sci. 1990;204:69–75.10.1243/PIME_PROC_1990_204_080_02
  • Das R. Estimation of radius ratio in a fin using inverse CFD model. CFD Lett. 2011;3:40–47.
  • Fainekos GE, Giannakoglou KC. Inverse design of airfoils based on a novel formulation of the ant colony optimization method. Inverse Probl. Sci. Eng. 2003;11:21–38.10.1080/1068276031000074288
  • Das R, Ooi KT. Predicting multiple combination of parameters for designing a porous fin subjected to a given temperature requirement. Energy Convers. Manage. 2013;66:211–219.10.1016/j.enconman.2012.10.019
  • Das R, Mallick A, Ooi KT. A fin design employing an inverse approach using simplex search method. Heat Mass Transfer. 2013;49:1029–1038.
  • Banim RS, Brett PN, Tierney MJ, Hinds M. Application of inverse methods to temperature measurement in internal mixers. Proc. Inst. Mech. Eng. E, J. Process Mech. Eng. 2003;217:295–306.10.1243/095440803322611660
  • Chang MH, Lin JH, Chen CK. The inverse estimation of local heat transfer coefficient in a vertical plate fin with its base subjected to periodically oscillated temperature. Numer. Heat Transfer-A. 2001;40:253–271.10.1080/10407782.2001.10120636
  • Huang CH, Hsiao JH. An inverse design problem in determining the optimum shape of spine and longitudinal fins. Numer. Heat Transfer-A. 2003;43:155–177.10.1080/10407780307326
  • Lee HL, Chou HM, Yang YC. The function estimation in predicting heat flux of pin fins with variable heat transfer coefficients. Energy Convers. Manage. 2004;45:1749–1758.10.1016/j.enconman.2003.09.017
  • Chen HT, Hsu WL. Estimation of heat transfer coefficient on the fin of annular finned-tube heat exchangers in natural convection for various fin spacings. Int. J. Heat Mass Transfer. 2007;50:1750–1761.10.1016/j.ijheatmasstransfer.2006.10.021
  • Chen WL, Yang YC, Lee HL. Inverse problem in determining convection heat transfer coefficient of an annular fin. Energy Convers. Manage. 2007;48:1081–1088.10.1016/j.enconman.2006.10.016
  • Peng H, Ling X, Wu E. An improved particle swarm algorithm for optimal design of plate-fin heat exchangers. Ind. Eng. Chem. Res. 2010;49:6144–6149.10.1021/ie1002685
  • Das R. Application of genetic algorithm for unknown parameter estimations in cylindrical fin. Appl. Soft Comput. 2012;12:3369–3378.10.1016/j.asoc.2012.07.005
  • Das R. Three-parameter estimation study in a radial fin geometry using FDM-based simplex method. Heat Transfer Eng. 2014;35:1309–1319.10.1080/01457632.2013.876866
  • Das R, Ooi KT. Application of simulated annealing in a rectangular fin with variable heat transfer coefficient. Inverse Prob. Sci. Eng. 2013;21:1352–1367.10.1080/17415977.2013.764294
  • Bhowmik A, Singla RK, Roy PK, Prasad DK, Das R, Repaka R. Predicting geometry of rectangular and hyperbolic fin profiles with temperature-dependent thermal properties using decomposition and evolutionary methods. Energy Convers. Manage. 2013;74:535–547.10.1016/j.enconman.2013.07.025
  • Panda S, Bhowmik A, Das R, Repaka R, Martha S. Application of homotopy analysis method and inverse solution of a rectangular wet fin. Energy Convers. Manage. 2014;80:305–318.10.1016/j.enconman.2014.01.041
  • Singla RK, Das R. Application of decomposition method and inverse prediction of parameters in a moving fin. Energy Convers. Manage. 2014;84:268–281.10.1016/j.enconman.2014.04.045
  • Birgin EG, Chambouleyron I, Martı́nez JM. Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comput. Phys. 1999;151:862–880.10.1006/jcph.1999.6224
  • Herskovits J, Dubeux V, Mota Soares CM, Araújo AL. Interior point algorithms for nonlinear constrained least squares problems. Inverse Probl. Sci. Eng. 2004;12:211–223.10.1080/10682760310001598698
  • Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009;2:183–202.10.1137/080716542
  • Golonek T, Rutkowski J. Genetic-algorithm-based method for optimal analog test point selection. IEEE Trans. Circuits Syst. II: Express Briefs. 2007;54:117–121.
  • Storn R, Price K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization. 1997;11:341–359.10.1023/A:1008202821328
  • Wong KP, Dong Z. Differential evolution, an alternative approach to evolutionary algorithm. IEEE Proceedings of the 13th International Conference on Intelligent Systems Application to Power Systems; 2005 Nov 6–10; Arlington, VA, p. 73–83.
  • Noman N, Iba H. Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 2008;12:107–125.10.1109/TEVC.2007.895272
  • Arab Aboosadi Z, Jahanmiri AH, Rahimpour MR. Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Appl. Energy. 2011;88:2691–2701.10.1016/j.apenergy.2011.02.017
  • Chopade RP, Mohan V, Mayank R, Uppaluri RVS, Mishra SC. Simultaneous retrieval of parameters in a transient conduction-radiation problem using a differential evolution algorithm. Numer. Heat Transfer-A. 2013;63:373–395.10.1080/10407782.2013.733179
  • Ouyang A, Zhou Y, Luo Q. Hybrid particle swarm optimization algorithm for solving systems of nonlinear equations. IEEE Proceedings of the International Conference on Granular Computing (GRC’09); 2009 Aug. 17–19; Nanchang, China, p. 460–465.
  • Yang YT, Chang CC, Chen CK. A double decomposition method for solving the annular hyperbolic profile fins with variable thermal conductivity. Heat Transfer Eng. 2010;31:1165–1172.10.1080/01457631003689294
  • Kierzenka J, Shampine LF. A BVP solver that controls residual and error. J. Numer. Anal. Indust. Appl. Math. 2008;3:27–41.
  • Kierzenka J, Shampine LF. A BVP solver based on residual control and the Maltab PSE. ACM Trans. Math. Softw (TOMS). 2001;27:299–316.10.1145/502800.502801
  • Shampine LF, Gladwell I, Thompson S. Solving ODEs with MATLAB. New Delhi: Cambridge University Press; 2003.10.1017/CBO9780511615542
  • Shampine LF, Kierzenka J, Reichelt MW. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Natick, MA: The Mathworks; 2000.
  • Shampine LF, Muir PH. Estimating conditioning of BVPs for ODEs. Math. Comput. Model. 2004;40:1309–1321.10.1016/j.mcm.2005.01.021
  • Coleman TF, Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optimization. 1996;6:418–445.10.1137/0806023
  • Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large-scale nonlinear programming. SIAM J. Optimization. 1999;9:877–900.10.1137/S1052623497325107
  • Byrd RH, Gilbert JC, Nocedal J. A trust region method based on interior point techniques for nonlinear programming. Math. Program. 2000;89:149–185.10.1007/PL00011391
  • Nocedal J, Wright SJ. Numerical optimization. 2nd ed., Springer series in operations research, Hiedelberg: Springer Verlag; 2006.
  • Thermal conductivity of some common materials and gases. Available from: www.engineeringtoolbox.com/thermal-conductivity-d_429.html.
  • Kaye & Laby tables of physical & chemical constants (thermal conductivities). National Physical Laboratory; 2014. Available from: http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_7.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.