285
Views
5
CrossRef citations to date
0
Altmetric
Articles

Recovery of parameters of cancellous bone by acoustic interrogation

, &
Pages 284-316 | Received 30 Jan 2014, Accepted 09 Jun 2014, Published online: 06 Mar 2015

References

  • Ashman RB, Cowin JD, Turner CH. Elastic properties of cancellous bone: measurement by ultrasonic technique. J. Biomech. 1987;10:979–989.
  • Ashman RB, Rho JY. Elastic modulus of trabecular bone material. J. Biomech. 1988;21:177–181.
  • Bossy E, Talmant M, Laugier P. Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study. J. Acoust. Soc. Am. 2002;112:297–307.
  • Chaffai S, Berger G, Laugier P. Frequency variation of ultrasonic attenuation coefficient of cancellous bone between 0.2 and 2.0 MHz. Proceedings of Ultrasonic Symposium; 1998; New York, NY, p. 1397–1400.
  • Chaffai S, Roberjot V, Peyrin F, Berger G, Laugier P. Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results. J. Acoust. Soc. Am. 2000;108:2403–2411.
  • Droin P, Berger G, Laugier P. Velocity dispersion of acoustic waves in cancellous bone. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 1998;45:581–592.
  • Fellah ZEA, Chapelon Y, Berger S, Lauriks W, Depollier C. Ultrasonic wave propagation in human cancellous bone: application of Biot theory. J. Acoust. Soc. Am. 2004;116:61–73.
  • Fellah M, Fellah Z, Mitri F, Ogam E, Depollier C. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone. J. Acoust. Soc. Am. 2013;133:1867–1881.
  • Fry FJ, Barger JE. Acoustical properties of the human skull. J. Acoust. Soc. Am. 1978;63:1576–1590.
  • Haire TJ, Langton CM. Biot theory: a review of its application to ultrasound propagation through cancellous bone. Bone. 1999;24:291–295.
  • Hobatho MC, Rho JY, Ashman RB. Atlas of mechanical properties of human cortical and cancellous bone. In: Van der Perre G, Lowet G, Borgwardt-Christensen A, editors. In Vivo assessment of bone quality by vibration and wave propagation techniques. Part 2. Durham (UK): ACCO; 1991. p. 7–38.
  • Kaczmarek M, Pakula M, Kubik J. Multiphase nature and structure of biomaterials studied by ultrasound. Ultrasonics. 2000;38:703–707.
  • Kundu T. Ultrasonic nondestructive evaluation. Boca Raton: CRC Press; 2004.
  • Lakes RS, Yoon HS, Katz JL. Slow compressional wave propagation in wet human cortical bone. Science. 1992;220:513–515.
  • Langton CM, Njeh CF. The physical measurement of bone. Bristol: Institute of Physics; 2004.
  • Langton CM, Njeh CF, Hodgskinson R, Curey JD. Prediction of mechanical properties of human cancellous by broadbeam ultrasonic attenuation. Bone. 1996;18:495–503.
  • Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng. Med. 1984;13:89–91.
  • McKelvie ML, Palmer SB. The interaction of ultrasound with cancellous bone. Phys. Med. Biol. 1991;10:1331–1340.
  • Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK. Quantitative ultrasound assessment of osteoporosis and bone status. London: Martin Duniz; 1999. p. 391–399.
  • Othman R, Gary G. Dispersion identification using the Fourier analysis of resonances in elastic and viscoelastic rods. In: Wirgin A, editor. Acoustics, mechanics, and the related topics of mathematical analysis. Singapore: World Scientific; 2002. p. 265–272.
  • Padilla F, Peyrin F, Laugier P. Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure. J. Acoust. Soc. Am. 2003;113:1122–1129.
  • Rho JY. An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone. Ultrasonics. 1996;34:777–783.
  • Strelitzki R, Evans JA. On the measurement of the velocity of ultrasound in the calcis using short pulses. Eur. J. Ultrasound. 1996;4:205–213.
  • Wear KA. Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment. J. Acoust. Soc. Am. 1999;106:3659–3664.
  • Wear KA. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 2001;48:602–608.
  • Wear KA. Fundamental precision limitations for measurements of frequency dependence of backscatter: applications in tissue-mimicking phantoms and trabecular bone. J. Acoust. Soc. Am. 2001;110:3275–3282.
  • Buchanan JL, Gilbert RP. Measuring osteoporosis using ultrasound. In: Fotiadis DI, Massalas CV, editors. Advances in scattering and biomedical engineering. Singapore: World Scientific; 2004. p. 484–494.
  • Buchanan JL, Gilbert RP, Khashanah K. Determination of the parameters of cancellous bone using low frequency acoustic measurements. J. Comput. Acoust. 2004;12:99–126.
  • Buchanan JL, Gilbert RP. Determination of the parameters of cancellous bone using high frequency acoustic measurements. Math. Comput. Model. 2007;45:281–308.
  • Buchanan JL, Gilbert RP. Determination of the parameters of cancellous bone using high frequency acoustic measurements II: inverse problems. J. Comput. Acoust. 2007;15:199–220.
  • Hosokawa A, Otani T. Ultrasonic wave propagation in bovine cancellous bone. J. Acoust. Soc. Am. 1997;101:558–562.
  • Williams JL. Prediction of some experimental results by Biot’s theory. J. Acoust. Soc. Am. 1992;91:1106–1112.
  • Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J. Bone Miner. Res. 1997;12:1280–1288.
  • Hoffmeister BK, Whitten SA, Rao JY. Low megahertz ultrasonic properties of bovine cancellous bone. Bone. 2000;26:635–642.
  • Hodgskinson R, Njeh CF, Curey JD, Langton CM. The ability of ultrasound velocity to predict the stiffness of cancellous bone in vitro. Bone. 1997;21:183–190.
  • Gilbert RP, Panchenko A, Vasilic A. Acoustic propagation in a random saturated medium: the monophasic case. Math. Meth. Appl. Sci. 2010;33:2206–2214.
  • Gilbert RP, Panchenko A, Vasilic A. Homogenizing the acoustics of cancellous bone with an interstitial non-newtonian fluid. Nonlinear Anal. 2011;74:1005–1018.
  • Gilbert RP, Panchenko A, Vasilic A. Acoustic propagation in a random saturated medium: the biphasic case. Appl. Anal. 2014;93:676–697.
  • Gilbert RP, Guyenne P, Hsiao GC. Determination of cancellous bone density using low frequency acoustic measurements. Appl. Anal. 2008;87:1213–1225.
  • Buchanan JL, Gilbert RP, Ou MY. Recovery of the parameters of cancellous bone by inversion of effective velocities, and transmission and reflection coefficients. Inverse Probl. 2011;27:1–23.
  • Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower frequency range. J. Acoust. Soc. Am. 1956;28:68–78.
  • Biot MA. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962;33:482–498.
  • Stoll RD. Acoustic waves in saturated sediments. In: Hampton L, editor. Physics of sound in Marine sediments. New York (NY): Plenum; 1974.
  • Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 1955;26:182–185.
  • Buchanan JL, Gilbert RP, Wirgin A, Xu YS. Marine acoustics: direct and inverse problems. Philadelphia (MA): SIAM; 2004.
  • Johnson DL, Koplik J, Dashen R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987;176:379–402.
  • Isaacs A, Ray T, Smith W. A hybrid evolutionary algorithm with simplex local search. Proceedings of Congress on Evolutionary Computation; IEEE; 2007; New York, NY. p. 1701–1708.
  • Price K, Storn R. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997;11:341–359.
  • Nelder JA, Mead R. A simplex method for function minimization. Comput. J. 1965;7:308–313.
  • Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 1998;9:112–147.
  • Gilbert RP, Hsiao GC, Xu L. On the variational formulation of a transmision problem for the Biot equations. Appl. Anal. 2010;89:745–755.
  • Hsiao GC, Kleinman RE, Roach GF. Weak solutions of fluid-solid interaction problems. Math. Nachr. 2000;218:139–163.
  • Hsiao GC, Wendland LW. Boundary integral equations. Berlin: Springer-Verlag; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.