337
Views
2
CrossRef citations to date
0
Altmetric
Articles

Structural parameters identification of uncertain multi-storey shear buildings using fuzzy neural network modelling

&
Pages 434-452 | Received 24 Jul 2015, Accepted 18 Mar 2016, Published online: 06 Apr 2016

References

  • Friswell MI, Mottershead JE. Finite element model updating in structural dynamics. Dordrecht: Kluwer Academic; 1995; p. 1–286.
  • Alvin KF, Robertson AN, Reich GW, et al. Structural system identification: from reality to models. Comput. Struct. 2003;81:1149–1176.10.1016/S0045-7949(03)00034-8
  • Khanmirza E, Khaji N, Majd VJ. Model updating of multistory shear buildings for simultaneous identification of mass, stiffness and damping matrices using two different soft-computing methods. Expert Syst. Appl. 2011;38:5320–5329.10.1016/j.eswa.2010.10.026
  • Fassois SD, Sakellariou JS. Time-series methods for fault detection and identification in vibrating structures. Philos. Trans. R. Soc. London, Ser. A. 2007;365:411–448.10.1098/rsta.2006.1929
  • Mahmoudabadi M, Ghafory-Ashtiany M, Hosseini M. Identification of modal parameters of non-classically damped linear structures under multi-component earthquake loading. Earthquake Eng. Struct. Dynam. 2007;36:765–782.10.1002/(ISSN)1096-9845
  • Hegde G, Sinha R. Parameter identification of torsionally coupled shear buildings from earthquake response records. Earthquake Eng. Struct. Dynam. 2008;37:1313–1331.10.1002/eqe.v37:11
  • Hong AL, Betti R, Lin CC. Identification of dynamic models of a building structure using multiple earthquake records. Struct. Control Health Monit. 2009;16:178–199.10.1002/stc.v16:2
  • Masri SF, Smyth AW, Chassiakos AG, et al. Application of neural networks for detection of changes in nonlinear systems. J. Eng. Mech. 2000;126:666–676.10.1061/(ASCE)0733-9399(2000)126:7(666)
  • Kao CY, Hung SL. Detection of structural damage via free vibration responses generated by approximating artificial neural networks. Comput. Struct. 2003;81:2631–2644.10.1016/S0045-7949(03)00323-7
  • Pillai P, Krishnapillai S. A hybrid neural network strategy for identification of structural parameters. Struct. Infrastruct. Eng. 2007;6:379–391.
  • Bakhary N, Hao H, Deeks AJ. Structure damage detection using neural with multi-stage substructuring. Adv. Struct. Eng. 2009;13:1–16.
  • Zhang S, Wang H, Wang W. Damage detection in structures using artificial neural networks. In: International Conference on Artificial Intelligence and Computational Intelligence; 2010 Oct 1; Sanya; p. 207–210.
  • Zhang K, Li H, Duan Z, et al. A probabilistic damage identification approach for structures with uncertainties under unknown input. Mech. Syst. Signal Process. 2011;25:1126–1145.10.1016/j.ymssp.2010.10.017
  • Shi A, Yu XH. Structural damage detection using artificial neural networks and wavelet transform. In: IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA) Proceedings; 2012 Jul 2–4; Tianjin, China; p. 7–11. doi: 10.1109/CIMSA.2012.6269593.
  • Lei Y, Su Y, Shen W. A probabilistic damage identification approach for structure under unknown excitation and with measurement uncertainties. J. Appl. Math. 2013;2013:1–7.
  • Chakraverty S. Modelling for identification of stiffness parameters of multi-storey Structure from dynamic data. J. Sci. Ind. Res. 2004;63:142–148.
  • Nicoud YR, Raphael B, Smith IF. System identification through model composition and stochastic search. J. Comput. Civil Eng. 2005;19:239–247.10.1061/(ASCE)0887-3801(2005)19:3(239)
  • Xu B, Song G, Masri SF. Damage detection for a frame structure model using vibration displacement measurement. Struct. Health Monit. 2012;11:281–292.10.1177/1475921711430437
  • Nandakumar P, Shankar K. Identification of structural parameters using consistent mass transfer matrix. Inverse Prob. Sci. Eng. 2013;22:436–457.
  • Billmaier M, Bucher C. System identification based on selective sensitivity analysis: a case-study. J. Sound Vib. 2013;332:2627–2642.10.1016/j.jsv.2012.12.005
  • Brownjohn JMW. Ambient vibration studies for system identification of tall buildings. Earthquake Eng. Struct. Dynam. 2003;32:71–95.10.1002/(ISSN)1096-9845
  • Yang JN, Lei Y, Pan SW, et al. System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes. Earthquake Eng. Struct. Dynam. 2003;32:1443–1467.10.1002/(ISSN)1096-9845
  • Chakraverty S. Identification of structural parameters of multistorey shear buildings from modal data. Earthquake Eng. Struct. Dynam. 2005;34:543–554.10.1002/(ISSN)1096-9845
  • Yoshitomi S, Takewaki I. Noise-bias compensation in physical-parameter system identification under microtremor input. Eng. Struct. 2009;31:580–590.10.1016/j.engstruct.2008.10.010
  • Beskhyroun S, Wotherspoon L, Ma QT. System identification of a 13- story reinforced concrete building through ambient and forced vibration. In: 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering; 2013 Jun 12–14; Kos Island, Greece; p. 1–11.
  • Wu ZS, Xu B, Yokoyama K. Decentralized parametric damage detection based on neural networks. Computer-Aided Civil Infrastruct. Eng. 2002;17:175–184.10.1111/mice.2002.17.issue-3
  • Huang CS, Hung SL, Wen CM, et al. A neural network approach for structural identification and diagnosis of a building from seismic response data. Earthquake Eng. Struct. Dynam. 2003;32:187–206.10.1002/(ISSN)1096-9845
  • Chakraverty S. Identification of structural parameters of two-storey shear buildings by the iterative training of neural networks. Archit. Sci. Rev. 2007;50:380–384.10.3763/asre.2007.5047
  • Pizano DG. Comparison of frequency response and neural network techniques for system identification of an actively controlled structure. Dyna. 2011;78:79–89.
  • Yun CB, Bahng EY. Substructural identification using neural networks. Comput. Struct. 2000;77:41–52.
  • Xu B, Wu Z, Chen G, et al. Direct identification of structural parameters from dynamic responses with neural networks. Eng. Appl. Artif. Intell. 2004;17:931–943.10.1016/j.engappai.2004.08.010
  • Chen CH. Structural identification from field measurement data using a neural network. Smart Mater. Struct. 2005;14:S104–S115.10.1088/0964-1726/14/3/013
  • Wang N, Er MJ, Han M. Parsimonious extreme learning machine using recursive orthogonal least squares. IEEE Trans. Neural Networks Learn. Syst. 2014;25:1828–1841.10.1109/TNNLS.2013.2296048
  • Wang N, Han M, Dong N, et al. Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification. Neurocomputing. 2014;128:59–72.10.1016/j.neucom.2013.01.062
  • Wang N, Er MJ, Han M. Generalized single-hidden layer feedforward networks for regression problems. IEEE Trans. Neural Networks Learn. Syst. 2015;26:1161–1176.10.1109/TNNLS.2014.2334366
  • Ishibuchi H, Fujioka R, Tanaka H. An architecture of neural networks for input vectors of fuzzy numbers. In: Fuzzy Systems IEEE International Conference; 1992 Mar 8–12; San Diego, CA; p. 1293–1300. doi: 10.1109/FUZZY.1992.258597.
  • Ishibuchi H, Tanaka H, Okada H. Fuzzy neural networks with fuzzy weights and fuzzy biases. Vol. 3. In: Neural Networks IEEE International Conference; 1993 Mar 28–Apr 01; San Francisco, CA; p. 1650–1655. doi: 10.1109/ICNN.1993.298804.10.1109/ICNN.1993.298804
  • Ishibuchi H, Morioka K, Tanaka H. A fuzzy neural network with trapezoid fuzzy weights Fuzzy Systems. Vol. 1. In: IEEE World Congress on Computational Intelligence Proceedings of the third IEEE Conference; 1994 Jun 26–29; Orlando, FL; p. 228–233. doi: 10.1109/FUZZY.1994.343681.
  • Ishibuchi H, Kwon K, Tanaka H. A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets Syst. 1995;71:277–293.10.1016/0165-0114(94)00281-B
  • Ishibuchi H, Morioka K, Turksen IB. Learning by fuzzified neural networks. Int. J. Approximate Reasoning. 1995;13:327–358.10.1016/0888-613X(95)00060-T
  • Lu PC. The application of fuzzy neural network techniques in constructing an adaptive car-following indicator. AIEDAM. 1998;12:231–241.
  • Yu W, Li X. Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Trans. Fuzzy Syst. 2004;12:411–420.
  • Er MJ, Liu F, Li MB. Self-constructing fuzzy neural networks with extended Kalman filter. Int. J. Fuzzy Syst. 2010;12:66–72.
  • Wang N. A generalized ellipsoidal basis function based online self-constructing fuzzy neural network. Neural Process. Lett. 2011;34:13–37.10.1007/s11063-011-9181-1
  • Zhang H, Dai X. The application of fuzzy neural network in medicine-a survey. Vol. 9. In: International Conference on Biological and Biomedical Sciences Advances in Biomedical Engineering; 2012; Qiqihar City, China; p. 111–116.
  • Malek H, Ebadzadeh MM, Rahmati M. Three new fuzzy neural networks learning algorithms based on clustering, training error and genetic algorithm. Appl. Intell. 2012;37:280–289.10.1007/s10489-011-0327-7
  • Leu VQ, Mwasilu F, Choi HH, et al. Robust fuzzy neural network sliding mode control scheme for IPMSM drives. Int. J. Electron. 2013;101:919–938.
  • Lee KH. First course on fuzzy theory and applications. New York (NY): Springer International Edition; 2009; p. 1–34.
  • Chakraverty S. Vibration of plates. Boca Raton (FL): Taylor and Francis Group CRC Press; 2009; p. 1–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.