504
Views
12
CrossRef citations to date
0
Altmetric
Articles

Inverse problem in the hyperthermia therapy of cancer with laser heating and plasmonic nanoparticles

, &
Pages 608-631 | Received 08 Nov 2015, Accepted 03 Apr 2016, Published online: 13 May 2016

References

  • Habash RWY, Bansal R, Krewski D, et al. Thermal Therapy Part 1: An Introduction to Thermal Therapy. Crit. Rev. Biomed. Eng. 2011;34:459–489.
  • Chatterjee DK, Krishnan S. Gold Nanoparticle-mediated Hyperthermia in Cancer Therapy. In: Cho HS, Krishnan S, editors. Cancer nanotechnology, principles and applications in radiation oncology. chap. 14. Boca Raton (FL): CRC Press; 2013. p. 171–182.
  • Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Therapeutic Delivery. 2011;2:1001–1014.10.4155/tde.11.72
  • Kampinga HH. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperth. 2006;22:191–196.10.1080/02656730500532028
  • Bayazitoglu Y, Kheradmand S, Tullius TK. An overview of nanoparticle assisted laser therapy. Int. J. Heat Mass Transf. 2013;67:469–486.10.1016/j.ijheatmasstransfer.2013.08.018
  • Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010;1:13–28.10.1016/j.jare.2010.02.002
  • Khlebtsov NG, Dykman LA. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectr. Radiat. Transfer. 2010;111:1–35.10.1016/j.jqsrt.2009.07.012
  • Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Nat. Acad. Sci. USA. 2003;100:13549–13554.10.1073/pnas.2232479100
  • El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:  applications in oral cancer. Nano Lett. 2005;5:829–834.10.1021/nl050074e
  • O’Neal DP, Hirsch LR, Halas NJ, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209:171–176.10.1016/j.canlet.2004.02.004
  • Clinicaltrials.gov: Pilot study of AuroLase(tm) therapy in refractory and/or recurrent tumors of the head and neck, in, National Institute of Health. 2010. Available from: http://clinicaltrials.gov/ct2/show/NCT00848042. September 2015.
  • Rengan AK, Bukhari AB, Pradhan A, et al. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett. 2015;15:842–848.10.1021/nl5045378
  • Wang Q, Xie L, He Z, et al. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy. Int. J. Nanomed. 2012;7:4715–4725.
  • Jung T, Grune T. Experimental basis for discriminating between thermal and athermal effects of water-filtered infrared A irradiation. Ann. N. Y. Acad. Sci. 2012;1259:33–38.10.1111/nyas.2012.1259.issue-1
  • Kelleher DK, Thews O, Rzeznik J, et al. Water filtered infrared-A-radiation: a novel technique for localized hyperthermia in combination with bacteriochlorophyll-based photodynamic therapy. Int. J. Hyperthermia. 1999;15:467–474.
  • Notter M, Piazena H, Muller W, et al. Low dose re-irradiation & thermography controlled wIRA hyperthermia in extended recurrent breast cancer. Proceedings of 31st Annual Meeting of the Society for Thermal Medicine; Minneapolis (MN); 2014.
  • Piazena H, Kelleher DK. Effects of infrared-A irradiation on skin: discrepancies in published data highlight the need for an exact consideration of physical and photobiological laws and appropriate experimental settings. Photochem. Photobiol. 2010;86:687–705.10.1111/php.2010.86.issue-3
  • Dombrovsky LA, Timchenko V, Pathak C, et al. Radiative heating of superficial human tissues with the use of water-filtered infrared-A radiation: a computational modeling. Int. J. Heat Mass Transfer. 2015;85:311–320.10.1016/j.ijheatmasstransfer.2015.01.133
  • Dombrovsky LA, Timchenko V, Jackson M, et al. A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells. Int. J. Heat Mass Transfer. 2011;54:5459–5469.10.1016/j.ijheatmasstransfer.2011.07.045
  • Vera J, Bayazitoglu Y. Gold nanoshell density variation with laser power for induced hyperthermia. Int. J. Heat Mass Transfer. 2009;52:564–573.10.1016/j.ijheatmasstransfer.2008.06.036
  • Vera J, Bayazitoglu Y. A note on laser penetration in nanoshell deposited tissue. Int. J. Heat Mass Transfer. 2009;52:3402–3406.10.1016/j.ijheatmasstransfer.2009.02.014
  • Elliott AM, Schwartz J, Wang J, et al. Quantitative comparison of delta P1 versus optical diffusion approximations for modeling near-infrared gold nanoshell heating. Med. Phys. 2009;36:1351–1358.10.1118/1.3056456
  • Dombrovsky LA, Randrianalisoa JH, Lipinski W, et al. Simplified approaches to radiative transfer simulations in laser-induced hyperthermia of superficial tumors. Comput. Thermal Sci. 2013;5:521–530.10.1615/ComputThermalScien.v5.i6
  • Dombrovsky LA, Timchenko V, Jackson M. Indirect heating strategy for laser induced hyperthermia: an advanced thermal model. Int. J. Heat Mass Transfer. 2012;55:4688–4700.10.1016/j.ijheatmasstransfer.2012.04.029
  • Fuentes D, Oden JT, Diller KR, et al. Computational modeling and real-time control of patient-specific laser treatment of cancer. Ann. Biomed. Eng. 2009;37:763–782.10.1007/s10439-008-9631-8
  • Gellermann J, Hildebrandt B, Issels R, et al. Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia. Cancer. 2006;107:1373–1382.10.1002/(ISSN)1097-0142
  • Feng Y, Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int. J. Hyperth. 2011;27:751–761.10.3109/02656736.2011.611962
  • Liu J. Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating. J. Biomech. 2001;34:1637–1642.10.1016/S0021-9290(01)00134-8
  • Liu J. Ways toward targeted freezing or heating tumor: precisely managing the heat delivery inside biological systems. Proceedings of 15th Int. Heat Trans. Conf., IHTC15-KN16; 2014, 1–25.
  • Lamien B, Orlande HRB, Eliçabe G, et al. State estimation problem in hyperthermia treatment of tumors loaded with nanoparticles. Proc. of 15th Int. Heat Trans. Conf., IHTC15-8772; 2014, 1–14.
  • Liu J. Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating. J. Biomech. 2001;34:1637–1642.10.1016/S0021-9290(01)00134-8
  • dos Santos I, Haemmerich D, Schutt D, et al. Probabilistic finite element analysis of radiofrequency liver ablation using the unscented transform. Phys. Med. Biol. 2009;54:627–640.10.1088/0031-9155/54/3/010
  • Greef DM, Kok HP, Correia D, et al. Uncertainty in hyperthermia treatment planning: the need for robust system design. Phys. Med. Biol. 2011;56:3233–3250.10.1088/0031-9155/56/11/005
  • Varon LAB, Orlande HRB, Eliçabe GE. Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int. J. Therm. Sci. 2015;98:228–236.10.1016/j.ijthermalsci.2015.06.022
  • Arulampalam MS, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 2001;50:174-188.
  • Ristic B, Arulampalam S, Gordon N. Beyond the Kalman filter. Boston, MA: Artech House; 2004.
  • Kaipio JP, Somersalo E. Statistical and computational inverse problems, applied mathematical sciences 160. New York: Springer-Verlag; 2004.
  • Kaipio JP, Fox C. The Bayesian framework for inverse problems in heat transfer. Heat Transfer Eng. 2011;32:718–753.10.1080/01457632.2011.525137
  • Jaime RAO, Basto RLQ, Lamien B. Fabrication methods of phantoms simulating optical and thermal properties. Procedia Eng. 2013;59:30–36.10.1016/j.proeng.2013.05.090
  • Çetingül MP, Herman C. A heat transfer model of skin tissue for the detection of lesions: sensitivity analysis. Phys. Med. Biol. 2010;55:5933–5951.
  • Çetingül MP, Herman C. Quantification of the thermal signature of a melanoma lesion. Int. J. Therm. Sci. 2011;50:421–431.
  • Star WM. Diffusion theory of light transport. In: Welch AJ, Van Gemert JCM, editors. Optical-thermal response of laser irradiated tissue. 2nd ed. Dordrecht: Springer; 2011. p. 145–201.
  • Elliott AM, Stafford RJ, Schwartz J, et al. Laser-induced thermal response and characterization of nanoparticles for cancer treatment using magnetic thermal imaging. Med. Phys. J. 2007;34:3102–3108.
  • Lamien B, Orlande HRB, Elicabe G. Laser heating of soft tissue phantoms with an inclusion loaded with plasmonic nanoparticles. Int. J. Micro-Nano Scale Transp.; Forthcoming 2015.
  • Seo I, Hayakawa CK, Venugopalan V. Radiative transport in the delta-P[sub 1] approximation for semi-infinite turbid media. Med. Phys. 2008;35:681–693.10.1118/1.2828184
  • Venugopalan V, You JS, Tromberg BJ. Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source-detector separations. Phys. Rev. E. 1998;58:2395–2407.10.1103/PhysRevE.58.2395
  • Carp SA, Prahl SA, Venugopalan V. Radiative transport in the delta-P[sub 1] approximation: accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media. J. Biomed. Opt. 2004;9:632–647.10.1117/1.1695412
  • Simon D. Optimal state estimation. New Jersey (NJ): Wiley; 2006.10.1002/0470045345
  • Candy JV. Bayesian signal processing classical, modern and particle filtering, methods. New Jersey (NJ): Wiley; 2009.
  • Liu J, West M. Combined parameter and state estimation in simulation-based filtering. In: Doucet A, de Freitas N, Gordon N, editors. Sequential Monte Carlo methods in practice. New York (NY): Springer-Verlag; 2001. p. 197–223.
  • Pitt M, Shephard N. Filtering via simulation: auxiliary particle filters. J. Am. Stat. Assoc. 1999;94:590–599.
  • Särkka S. Bayesian filtering and smoothing. Cambridge: Cambridge University Press; 2013.
  • Tuchin V. Tissue optics, light scattering methods and instruments for medical diagnosis. Washington: SPIE; 2000.
  • Spirou GM, Oraevsky AA, Vitkin IA, et al. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics. Phys. Med. Biol. 2005;50:N141–N153.10.1088/0031-9155/50/14/N01
  • Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem B. 2006;110:7238–7248.
  • Bashkatov AN, Genina EA, Tuchin VV. Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innovative Opt. Health Sci. 2011;04:9–38.10.1142/S1793545811001319
  • Prahl SA. Light transport in tissue [doctoral dissertation]. Austin: The University of Texas; 1988.
  • Shada LA, Dengel LT, Petroni GR, et al. Infrared thermography of cutaneous melanoma metastases. J. Surgical Res. 2013;182:E9–E14.10.1016/j.jss.2012.09.022
  • http://fieldp.com/myblog/2008/arrhenius-rate-integrals-in-computer-thermalsolutions/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.