245
Views
0
CrossRef citations to date
0
Altmetric
Articles

A complex elastographic hyperbolic solver (CEHS) to recover frequency dependent complex shear moduli in viscoelastic models utilizing one or more displacement data-sets

, , , , , , & show all
Pages 1155-1177 | Received 23 Dec 2016, Accepted 18 Sep 2017, Published online: 27 Oct 2017

References

  • Barbone PE, Bamber JC. Quantitative elasticity imaging: what can and cannot be inferred from strain images. Phys Med Biol. 2002;47:2147–2164.
  • Oberai A, Gokhale N, Doyley M, et al. Evaluation of the adjoint equation based algorithm for elasticity imaging. Phys Med Biol. 2004;49:2955–2974.
  • Konafagou EE, Harrigan T, Ophir J. Shear strain estimation and lesion mobility assessment in elastography. Ultrasonics. 2000;38:400–404.
  • Thitaikumar A, Ophir J. Effect of lesion boundary conditions on axial strain elastograms: a parametric study. Ultrasound Med Biol. 2007;33(9):1463–1467.
  • Ophir J, Céspedes EI, Ponnekanti H, et al. Elastography: a quantitative method for imaging the elasticity of biological tissue. Ultrason Imaging. 1991;13:111–134.
  • O’Donnell M, Skovoroda AR, Shapo BM, et al. Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelec Freq Control. 1994;41:314–325.
  • Sugimoto T, Ueha S, Itoh K. Tissue hardness measurement using the radiation force of focused ultrasound. Proc IEEE Ultrason Symp. 1990;1:1377–1380.
  • Parker KJ, Fu D, Gracewski SM, et al. Vibration sonoelastography and the detectability of lesions. Ultrasound Med Biol. 1998;24:1937–1947.
  • Wu Z, Taylor LS, Rubens DJ, et al. Sonoelastographic imaging of interference patterns for estimation of the shear velocity of homogeneous biomaterials. Phys Med Biol. 2004;49:911–922.
  • Wu Z, Rubens DJ, Parker KJ. Sonoelastographic imaging of interference patterns for estimation of the shear velocity distribution in biomaterials. J Acoust Soc Am. 2006;120:535–545.
  • Maleke C, Luo J, Konofagou EE. 2d simulation of the amplitude-modulated harmonic motion imaging (AM-HMI) with experimental validation. In: IEEE International Ultrasonics Symposium. New York, NY; 2007 Oct 28-31. p. 681–706.
  • Curiel L, Souchon R, Rouviere O, et al. Elastography for the follow-up of high-intensity focused ultrasound prostate cancer treatment: initial comparison with MRI. Ultrasound Med Biol. 2005;31:1461–1468.
  • Fatemi M, Greenleaf JF. Ultrasound-stimulated vibro-acoustic spectrography. Science. 1998;280:82–85.
  • Greenleaf J, Fatemi M, Insana M. Selected methods for imaging elastic properties of biological tissues. Annu Rev Biomed Eng. 2003;5:57–58.
  • Manduca A, Lake DS, Ehman RL. Improved inversion of MR elastography images by spatio-temporal directional filtering. Proc SPIE Int Soc Opt Eng. 2003;5032:445–452.
  • Ehman RL, Manducca A, McLaughlin JR, et al. Variance controlled shear stiffness images for MRE data. In: IEEE International Symposium on Biomedical Imaging: Macro to Nano. Arlington; 2006. p. 960–963.
  • Sinkus R, Siegmann K, Xydeas T, et al. MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med. 2007;58:1135–1144.
  • Sarvazyan A, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging a new ultrasonic technology of medical diagnostics. Ultrasound Med Biol. 1998;24:1419–1435.
  • Nightingale KR, McAleavey SA, Trahey GE. Shear wave generation using acoustic radiation force: in vivo and ex vivo results. Ultrasound Med Biol. 2003;29(2):1715–1723.
  • Bercoff J, Tanter M, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;19:396–409.
  • Sandrin L, Tanter M, Catheline S, et al. Shear modulus imaging with 2-d transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:426–435.
  • Tanter M, Bercoff J, Athanasiou A, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008;34(9):1373–1386.
  • Palmeri ML, McAleavey SA, Trahey GE, et al. Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media. IEEE Trans Ultrason Ferroelectr Freq Control. 2006;53(7):1300–1313.
  • Palmeri ML, Wang MH, Dahl JJ, et al. Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol. 2008;34(4):546–558.
  • Palmeri ML, Dahl JJ, Macleod DB, et al. On the feasibility of imaging peripheral nerves using acoustic radiation force impulse imaging. Ultrasound Imaging. 2009;31(3):172–182.
  • Chen S, Urban MW, Pislaru C, et al. Shearwave dispersion ultrasound vibrometry (SDUV) for measuring tissue elasticity and viscosity. IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):55–62.
  • Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2011;56:R1–R29.
  • Zhang M, Nigwekar P, Castaneda B, et al. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34(7):1033–1042.
  • Sinkus R, Tanter M, Xydeas T, et al. Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging. 2005;23(2):159–165.
  • Chen S, Urban MW, Greenleaf JF, et al. Quantification of liver stiffness and viscosity with SDUV: in vivo animal study. In: IEEE International Ultrasonics Symposium Proceeding. Beijing; 2008. p. 654–657.
  • Klatt D, Hamhaber U, Asbach P, et al. Noninvasive assessment of the rheological behavior of human organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol. 2007;52:7281–7294.
  • Koeller RC. Applications of fractional calculus to theory of viscoelasticity. J Appl Mech Trans ASME. 1984;51:299–307.
  • Suki B, Barabasi AL, Lutchen KR. Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol. 1994;76:2749–2759.
  • Taylor LS, Lerner AL, Rubens DJ, et al. A Kelvin-Voigt fractional derivative model for viscoelastic characterization of liver tissue. In: ASME International Mechanical Engineering Congress and Exposition. New Orleans; 2002.
  • Fung Y. Biomechanics: mechanical properties of living tissue. New York (NY): Springer-Verlag; 1993.
  • Lin K, McLaughlin JR, Renzi D, et al. Shear wave speed recovery in sonoelastography using crawling wave data. J Acoust Soc Am. 2010;128:88–97.
  • Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelec Freq Control. 1992;39:262–267.
  • Jensen JA. Field: a program for simulating ultrasound systems, paper presented at the 10th nordic-baltic conference on biomedical imaging. Med Biol Eng Comput. 1996;34(1):351–353.
  • Lin K, McLaughlin JR. An error estimate on the direct inversion model in shear stiffness imaging. Inverse Prob. 2009;25:075003.
  • Lin K, McLaughlin JR, Zhang N. Log-elastographic and non-marching full inversion schemes for shear modulus recovery from single frequency elastographic data. Inverse Prob. 2009;25:075004.
  • Hwang YH. Upwind scheme for non-hyperbolic systems. J Comput Phys. 2003;192:643–676.
  • McLaughlin JR, Zhang N, Manduca A. Calculating tissue shear modulus and pressure by 2d log-elastographic methods. Inverse Prob. 2010;26:085007.
  • Zhang YX, Oberai A, Barbone P, et al. Solution of the time-harmonic viscoelastic inverse problem with interior data in two dimensions. Int J Numer Methods Eng. 2012;92:1100–1116.
  • Doyley MM. Model-based elastography: a survey of approaches to the inverse elasticity problem. Phys Med Biol. 2012;57(3):35–73.
  • Thomas JW. Numerical partial differential equations: finite difference methods. New York (NY): Springer; 1995.
  • Nyborg WLM. Physical acoustics. New York (NY): Academic Press; 1965.
  • Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics. 2001;66(1):294–307.
  • Anderssen R, Hegland M. For numerical differentiation, dimensionality can be a blessing!. Math Comput. 1999;68(227):1121–1141.
  • Lin K, McLaughlin JR, Thomas A, et al. Two-dimensional shear wave speed and crawling wave speed recoveries from in vitro prostate data. J Acoust Soc Am. 2010, submitted for publication.
  • Lee RH, Szajewski BA, Hah Z, et al. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force. Int J Numer Methods Biomed Eng. 2012;28:678–696.
  • McLaughlin JR, Renzi D. Shear wave speed recovery in transient elastography and supersonic imaging using propagation fronts. Inverse Prob. 2006;22:681–706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.