331
Views
3
CrossRef citations to date
0
Altmetric
Articles

Solution to a three-dimensional axisymmetric inverse electromagnetic casting problem

&
Pages 1451-1467 | Received 24 Apr 2017, Accepted 04 Feb 2019, Published online: 19 Feb 2019

References

  • Zhiqiang C, Fei J, Xingguo Z, et al. Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys. Mater Sci Eng A. 2002;327:133–137. doi: 10.1016/S0921-5093(01)01673-2
  • Fu HZ, Shen J, Liu L, et al. Electromagnetic shaping and solidification control of Ni-base superalloys under vacuum. J Mater Process Technol. 2004;148:25–29. doi: 10.1016/j.jmatprotec.2003.11.039
  • Besson O, Bourgeois J, Chevalier PA, et al. Numerical modelling of electromagnetic casting processes. J Comput Phys. 1991;92:482–507. doi: 10.1016/0021-9991(91)90219-B
  • Shercliff JA. Magnetic shaping of molten metal columns. Proc R Soc Lond A. 1981;375:455–473. doi: 10.1098/rspa.1981.0063
  • Mestel AJ. Magnetic levitation of liquid metals. J Fluid Mech. 1982;117:27–43. doi: 10.1017/S0022112082001505
  • Sneyd AD. Fluid flow induced by a rapidly alternating or rotating magnetic field. J Fluid Mech. 1979;92:35–51. doi: 10.1017/S0022112079000513
  • Sneyd AD, Moffatt HK. Fluid dynamical aspects of the levitation-melting process. J Fluid Mech. 1982;117:45–70. doi: 10.1017/S0022112082001517
  • Li BQ. The magnetothermal phenomena in electromagnetic levitation processes. Int J Eng Sci. 1993;31:201–220. doi: 10.1016/0020-7225(93)90034-R
  • Moffatt HK. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals. J Fluid Mech. 1985;159:359–378. doi: 10.1017/S0022112085003251
  • Bui RT. Computational modelling of thermophysical processes in the light metals industry. Rev Gén Therm. 1997;36:575–591. doi: 10.1016/S0035-3159(97)89985-0
  • Dulikravich GS, Lynn SR. Unified electro-magneto-fluid dynamics (EMFD): introductory concepts. Int J Non-Linear Mech. 1997;32:913–922. doi: 10.1016/S0020-7462(96)00084-4
  • Dulikravich GS, Lynn SR. Unified electro-magneto-fluid dynamics (EMFD): a survey of mathematical models. Int J Non-Linear Mech. 1997;32:923–932. doi: 10.1016/S0020-7462(96)00083-2
  • Dennis BH, Dulikravich GS. Magnetic field suppression of melt flow in crystal growth. Int J Heat Fluid Flow. 2002;23:269–277. doi: 10.1016/S0142-727X(02)00174-1
  • Dulikravich GS, Colaço MJ. Convective heat transfer control using magnetic and electric fields. J Enhanc Heat Transf. 2006;13:139–155. doi: 10.1615/JEnhHeatTransf.v13.i2.40
  • Colaço MJ, Dulikravich GS. A multilevel hybrid optimization of magnetohydrodynamic problems in double-diffusive fluid flow. J Phys Chem Solids. 2006;67:1965–1972. doi: 10.1016/j.jpcs.2006.05.036
  • Bay F, Labbe V, Favennec Y, et al. A numerical model for induction heating processes coupling electromagnetism and thermomechanics. Int J Numer Methods Eng. 2003;58:839–867. doi: 10.1002/nme.796
  • Coulaud O, Henrot A. Numerical approximation of a free boundary problem arising in electromagnetic shaping. SIAM J Numer Anal. 1994;31:1109–1127. doi: 10.1137/0731058
  • Coulaud O. Multiple time scales and perturbation methods for high frequency electromagnetic-hydrodynamic coupling in the treatment of liquid metals. Nonlinear Anal-Theor. 1997;30:3637–3643. Proceedings of the Second World Congress of Nonlinear Analysts. doi: 10.1016/S0362-546X(97)00264-2
  • Coulaud O. Asymptotic analysis of magnetic induction with high frequency for solid conductors. RAIRO Modél Math Anal Numér. 1998;32:651–669. doi: 10.1051/m2an/1998320606511
  • Brancher JP, Etay J, Séro-Guillaume O. Formage d'une lame métallique liquide. Calculs et expériences. J Méc théor appl. 1983;2:977–989.
  • Brancher JP, Séro-Guillaume OE. Étude de la déformation d'un liquide magnétique. Arch Ration Mech Anal. 1985;90:57–85. doi: 10.1007/BF00281587
  • Henrot A, Brancher JP, Pierre M. Existence of equilibria in electromagnetic casting. In: Proceedings of the Fifth International Symposium on Numerical Methods in Engineering, Vol. 1, 2 (Lausanne, 1989). Comput. Mech., Southampton; 1989. p. 221–228.
  • Henrot A, Pierre M. Un problème inverse en formage des métaux liquides. RAIRO Modél Math Anal Numér. 1989;23:155–177. doi: 10.1051/m2an/1989230101551
  • Felici TP, Brancher JP. The inverse shaping problem. Eur J Mech B Fluids. 1991;10:501–512.
  • Felici TP. The inverse problem in the theory of electromagnetic shaping. University of Cambridge; 1992.
  • Pierre M, Roche JR. Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur J Mech B Fluids. 1991;10:489–500.
  • Pierre M, Roche JR. Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer Math. 1993;65:203–217. doi: 10.1007/BF01385748
  • Pierre M, Rouy E. A tridimensional inverse shaping problem. Commun Part Diff Eq. 1996;21:1279–1305. doi: 10.1080/03605309608821226
  • Shin J, Spicer JP, Abell JA. Inverse and direct magnetic shaping problems. Struct Multidiscip Optim. 2012;46:285–301. doi: 10.1007/s00158-011-0756-2
  • Canelas A, Roche JR, Herskovits J. The inverse electromagnetic shaping problem. Struct Multidiscip Optim. 2009;38:389–403. doi: 10.1007/s00158-008-0285-9
  • Canelas A, Roche JR, Herskovits J. Inductor shape optimization for electromagnetic casting. Struct Multidiscip Optim. 2009;39:589–606. doi: 10.1007/s00158-009-0386-0
  • Roche JR, Canelas A, Herskovits J. Shape optimization for inverse electromagnetic casting problems. Inverse Probl Sci Eng. 2012;20:951–972. doi: 10.1080/17415977.2011.637206
  • Canelas A, Novotny AA, Roche JR. A new method for inverse electromagnetic casting problems based on the topological derivative. J Comput Phys. 2011;230:3570–3588. doi: 10.1016/j.jcp.2011.01.049
  • Canelas A, Roche JR. Topology optimization in electromagnetic casting via quadratic programming. Inverse Probl Sci Eng. 2014;22:419–435. doi: 10.1080/17415977.2013.788173
  • Felici TP. On the surface stability of liquid conductors in electromagnetic shaping. J Fluid Mech. 1995;302:1–28. doi: 10.1017/S0022112095003983
  • Canelas A, Herskovits J, Telles JCF. Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization. Comput Struct. 2008;86:1517–1526. doi: 10.1016/j.compstruc.2007.05.008
  • Kohn R, Vogelius M. Determining conductivity by boundary measurements. Commun Pure Appl Math. 1984;37:289–298. doi: 10.1002/cpa.3160370302
  • Jackson JD. Classical electrodynamics. New York (NY): Third Wiley; 1998.
  • Gagnoud A, Etay J, Garnier M. Le problème de frontière libre en lévitation électromagnétique. J Méc Théor Appl. 1986;5:911–934.
  • Novruzi A, Roche JR. Second order derivatives, Newton method, application to shape optimization. Rapport de recherche RR-2555, INRIA; 1995.
  • Roche JR. Gradient of the discretized energy method and discretized continuous gradient in electromagnetic shaping simulation. Appl Math Comput Sci. 1997;7:545–565.
  • Roche JR. Adaptive Newton-like method for shape optimization. Control Cybern. 2005;34:363–377.
  • Novruzi A, Roche JR. Newton's method in shape optimisation: a three-dimensional case. BIT. 2000;40:102–120. doi: 10.1023/A:1022370419231
  • Atkinson KE. The numerical solution of integral equations of the second kind. Cambridge: Cambridge University Press; 1997. (Cambridge Monographs on Applied and Computational Mathematics; 4).
  • Becker AA. The boundary element method in engineering: a complete course. New York (NY): McGraw-Hill; 1992.
  • Sullivan CR. Optimal choice for number of strands in a litz-wire transformer winding. IEEE Trans Power Electron. 1999;14:283–291. doi: 10.1109/63.750181
  • Brebbia CA, Telles JCF, Wrobel LC. Boundary element technique: theory and applications in engineering. Berlin: Springer-Verlag; 1984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.