705
Views
18
CrossRef citations to date
0
Altmetric
Articles

Trace formula and inverse nodal problem for a conformable fractional Sturm-Liouville problem

&
Pages 524-555 | Received 30 Jul 2018, Accepted 29 Apr 2019, Published online: 25 May 2019

References

  • Khalil R, Al Horani M, Yousef A, et al. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65–70. doi: 10.1016/j.cam.2014.01.002
  • Abdeljawad T. On conformable fractional calculus. J Comput Appl Math. 2015;279:57–66. doi: 10.1016/j.cam.2014.10.016
  • Atangana A, Baleanu D, Alsaedi A. New properties of conformable derivative. Open Math. 2015;13:889–898. doi: 10.1515/math-2015-0081
  • Ortigueira MD, Tenreiro Machado JA. What is a fractional derivative?. J Comput Phys. 2015;293:4–13. doi: 10.1016/j.jcp.2014.07.019
  • Makhlouf AB, Naifar O, Hammami MA, et al. FTS and FTB of conformable fractional order linear systems. Math Probab Eng. 2018;2018: 2572986:5.
  • Chung WS. Fractional Newton mechanics with conformable fractional derivative. J Comput Appl Math. 2015;290:150–158. doi: 10.1016/j.cam.2015.04.049
  • Ebaid A, Masaedeh B, El-Zahar E. A new fractional model for the falling body problem. Chin Phys Lett. 2017;34:020201–1. doi: 10.1088/0256-307X/34/2/020201
  • Anderson DR, Ulness DJ. Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J Math Phys. 2015;56:063502. doi: 10.1063/1.4922018
  • Lazo MJ, Torres DFM. Variational calculus with conformable fractional derivatives. IEEE/CAA J Automat Sinica. 2017;4:340–352. doi: 10.1109/JAS.2016.7510160
  • Nwaeze ER, Torres DFM. Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales. Arab J Math. 2017;6:13–20. doi: 10.1007/s40065-016-0160-2
  • Benkhettou N, Hassani S, Torres DFM. A conformable fractional calculus on arbitrary time scales. J King Saud Univ Sci. 2016;28:93–98. doi: 10.1016/j.jksus.2015.05.003
  • Zhou HW, Yang S, Zhang SQ. Conformable derivative approach to anomalous diffusion. Phys A. 2018;491:1001–1013. doi: 10.1016/j.physa.2017.09.101
  • Iyiola O, Tasbozan O, Kurt A, et al. On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Solitons Fractals. 2017;94:1–7. doi: 10.1016/j.chaos.2016.11.003
  • Avci D, Iskender Eroglu B, Ozdemir N. The Dirichlet problem of a conformable advection-diffusion equation. Thermal Sci. 2017;21:9–18. doi: 10.2298/TSCI160421235A
  • Cenesiz Y, Kurt A, Nane E. Stochastic solutions of conformable fractional Cauchy problems. Statist Probab Lett. 2017;124:126–131. doi: 10.1016/j.spl.2017.01.012
  • Zhao D, Luo M. General conformable fractional derivative and its physical interpretation. Calcolo. 2017;54:903–917. doi: 10.1007/s10092-017-0213-8
  • Al-Towailb MA. A q-fractional approach to the regular Sturm-Liouville problems. Electron J Differ Equ. 2017;88:1–13.
  • Khosravian-Arab H, Dehghan M, Eslahchi MR. Fractional Sturm-Liouville boundary value problems in unbounded domains, theory and applications. J Comput Phys. 2015;299:526–560. doi: 10.1016/j.jcp.2015.06.030
  • Klimek M, Agrawaln OP. Fractional Sturm-Liouville problem. Comput Math Appl. 2013;66:795–812. doi: 10.1016/j.camwa.2012.12.011
  • Rivero M, Trujillo JJ, Velasco MP. A fractional approach to the Sturm-Liouville problem. Centr Eur J Phys. 2013;11:1246–1254.
  • Monje CA, Chen Y, Vinagre BM, et al. Fractional-order systems and controls: fundamentals and applications. London (UK): Springer-Verlag; 2010.
  • Baleanu D, Guvenc ZB, Machado JT. New trends in nanotechnology and fractional calculus applications. New York (US): Springer; 2010.
  • Mainardi F. Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. London, UK: Imperial College Press; 2010.
  • Silva MF, Machado JAT. Fractional order PD α joint control of legged robots. J Vib Control. 2006;12:1483–1501. doi: 10.1177/1077546306070608
  • Pálfalvi A. Efficient solution of a vibration equation involving fractional derivatives. Int J Nonlin Mech. 2010;45:169–175. doi: 10.1016/j.ijnonlinmec.2009.10.006
  • Levitan BM. Calculation of the regularized trace for the Sturm-Liouville operator. Uspekhi Mat Nauk. 1964;19:161–165.
  • Gelfand IM, Levitan BM. On a simple identity for the characteristic values of a differential operator of the second order. Dokl Akad Nauk SSSR. 1953;88:593–596.
  • Dikii LA. On a formula of Gelfand-Levitan. Uspekhi Mat Nauk. 1953;8:119–123.
  • Halberg CJ, Kramer VA. A generalization of the trace concept. Duke Math J. 1960;27:607–617. doi: 10.1215/S0012-7094-60-02758-7
  • Levitan BM, Sargsjan IS. Sturm-Liouville and Dirac operators. Vol. 59. Dordrecht: Kluwer Academic Publishers Group; 1991.
  • Levitan BM, Sargsjan IS. Introduction to spectral theory: selfadjoint ordinary differential operators. Vol. 39. Providence: American Mathematical Society; 1975.
  • Sadovnichii VA, Podol'skii VE. Traces of differential operators. Differ Equ. 2009;45:477–493. doi: 10.1134/S0012266109040028
  • Borisov D, Freitas P. Eigenvalue asymptotics, inverse problems and a trace formula for the linear damped wave equation. J Differential Equations. 2009;247:3028–3039. doi: 10.1016/j.jde.2009.07.029
  • Hıra F. The regularized trace of Sturm-Liouville problem with discontinuities at two points. Inverse Probl Sci Eng. 2017;25:785–794. doi: 10.1080/17415977.2016.1197921
  • Carlson R. Eigenvalue estimates and trace formulas for the matrix Hill's equation. J Differential Equations. 2000;167:211–244. doi: 10.1006/jdeq.2000.3785
  • Yang CF. Trace formulae for the matrix Schrödinger equation with energy-dependent potential. J Math Anal Appl. 2012;393:526–533. doi: 10.1016/j.jmaa.2012.03.003
  • Gelfand IM, Levitan BM. On the determination of a differential equation from its spectral function. Amer Math Soc Trans. 1951;1:253–304.
  • McLaughlin JR. Inverse spectral theory using nodal points as data–a uniqueness result. J Differential Equations. 1988;73:354–362. doi: 10.1016/0022-0396(88)90111-8
  • Hald OH, McLaughlin JR. Solution of inverse nodal problems. Inverse Problems. 1989;5:307–347. doi: 10.1088/0266-5611/5/3/008
  • Browne PJ, Sleeman BD. Inverse nodal problem for Sturm-Liouville equation with eigenparameter depend boundary conditions. Inverse Problems. 1996;12:377–381. doi: 10.1088/0266-5611/12/4/002
  • Yang XF. A solution of the inverse nodal problem. Inverse Problems. 1997;13:203–213. doi: 10.1088/0266-5611/13/1/016
  • Cheng YH, Law CK, Tsay J. Remarks on a new inverse nodal problem. J Math Anal Appl. 2000;248:145–155. doi: 10.1006/jmaa.2000.6878
  • Ozkan AS, Keskin B. Inverse nodal problems for Sturm-Liouville equation with eigenparameter-dependent boundary and jump conditions. Inverse Probl Sci Eng. 2015;23:1306–1312. doi: 10.1080/17415977.2014.991730
  • Shieh CT, Yurko VA. Inverse nodal and inverse spectral problems for discontinuous boundary value problems. J Math Anal Appl. 2008;347:266–272. doi: 10.1016/j.jmaa.2008.05.097
  • Yang CF, Yang XP. Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter. Inverse Probl Sci Eng. 2011;19:951–961. doi: 10.1080/17415977.2011.565874
  • Yang CF. Inverse nodal problems of discontinuous Sturm-Liouville operator. J Differential Equations. 2013;254:1992–2014. doi: 10.1016/j.jde.2012.11.018
  • Wang YP, Yurko VA. On the inverse nodal problems for discontinuous Sturm-Liouville operators. J Differential Equations. 2016;260:4086–4109. doi: 10.1016/j.jde.2015.11.004
  • Wang YP, Lien KY, Shieh CT. Inverse problems for the boundary value problem with the interior nodal subsets. Appl Anal. 2017;96:1229–1239. doi: 10.1080/00036811.2016.1183770
  • Wang Y, Zhou J, Li Y. Fractional sobolev's spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales. Adv Math Phys. 2016;2016:9636491:21.
  • Pospíšil M, Škripková LP. Sturm's theorems for conformable fractional differential equations. Math Commun. 2016;21:273–281.
  • Hammad MA, Khalil R. Abel's formula and wronskian for conformable fractional differential equations. Int J Differ Equ Appl. 2014;13:177–183.
  • Freiling G, Yurko VA. Inverse Sturm-Liouville problems and their applications. New York: Nova Science Publishers; 2001.
  • Law CK, Shen CL, Yang CF. The inverse nodal problem on the smoothness of the potential function. Inverse Problems. 1999;15:253–263. doi: 10.1088/0266-5611/15/1/024
  • Yang XF. A new inverse nodal problem. J Differential Equations. 2001;169:633–653. doi: 10.1006/jdeq.2000.3911
  • Guo Y, Wei G. Inverse problems: dense nodal subset on an interior subinterval. J Differential Equations. 2013;255:2002–2017. doi: 10.1016/j.jde.2013.06.006
  • Law CK, Yang CF. Reconstructing the potential function and its derivatives using nodal data. Inverse Problems. 1998;14:299–312. doi: 10.1088/0266-5611/14/2/006
  • Shen CL, Tsai TM. On a uniform approximation of the density function of a string equation using EVs and nodal points and some related inverse nodal problems. Inverse Problems. 1995;11:1113–1123. doi: 10.1088/0266-5611/11/5/014
  • Yang CF. Trace and inverse problem of a discontinuous Sturm-Liouville operator with retarded argument. J Math Anal Appl. 2012;395:30–41. doi: 10.1016/j.jmaa.2012.04.078

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.