632
Views
5
CrossRef citations to date
0
Altmetric
Articles

A combined neural network and simulated annealing based inverse technique to optimize the heat source control parameters in heat treatment furnaces

ORCID Icon, , &
Pages 1265-1286 | Received 06 Aug 2019, Accepted 23 Dec 2019, Published online: 06 Feb 2020

References

  • Baik O, Marcotte M, Castaigne F. Cake baking in tunnel type multi-zone industrial ovens part I. Characterization of baking conditions. Food Res Int. 2000;33(7):587–598. doi: 10.1016/S0963-9969(00)00095-8
  • Zhang H, Deng S. Evaluating heat flux profiles in aluminum reheating furnace with regenerative burner. Energies. 2017;10(4):562. doi: 10.3390/en10040562
  • Franca F, Morales JC, Oguma M, et al. Inverse radiation heat transfer within enclosures with nonisothermal participating media. In: International Heat Transfer Conference, Kyongju, Korea; Vol. 7; 1998. p. 433–438.
  • Berrocal Tito MJ, Roberty NC, Silva Neto AJ, et al. Inverse radiative transfer problems in two-dimensional participating media. Inverse Probl Sci Eng. 2004;12(1):103–121. doi: 10.1080/10682760310001597536
  • Howell J, Ezekoye O, Morales J. Inverse design model for radiative heat transfer. J Heat Transfer. 2000;122(3):492–502. doi: 10.1115/1.1288774
  • Rukolaine S. Regularization of inverse boundary design radiative heat transfer problems. J Quant Spectros Radiat Transf. 2007;104(1):171–195. doi: 10.1016/j.jqsrt.2006.09.001
  • Das MK, Tariq A, Panigrahi PK, et al. Estimation of convective heat transfer coefficient from transient liquid crystal data using an inverse technique. Inverse Probl Sci Eng. 2005;13(2):133–155. doi: 10.1080/10682760412331313414
  • França FH, Howell JR, Ezekoye OA, et al. Inverse design of thermal systems with dominant radiative transfer. In: Advances in heat transfer. Vol. 36. Elsevier, Massachusetts, United States; 2003. p. 1–110.
  • Daun K, França F, Larsen M, et al. Comparison of methods for inverse design of radiant enclosures. J Heat Transfer. 2006;128(3):269–282. doi: 10.1115/1.2151198
  • Schneider PS, Mossi AC, França FHR, et al. Application of inverse analysis to illumination design. Inverse Probl Sci Eng. 2009;17(6):737–753. doi: 10.1080/17415970802522380
  • Lemos LD, Brittes R, França FH. Application of inverse analysis to determine the geometric configuration of filament heaters for uniform heating. Int J Therm Sci. 2016;105:1–12. doi: 10.1016/j.ijthermalsci.2016.02.015
  • Kim KW, Baek SW, Kim MY, et al. Estimation of emissivities in a two-dimensional irregular geometry by inverse radiation analysis using hybrid genetic algorithm. J Quant Spectrosc Radiat Transf. 2004;87(1):1–14. doi: 10.1016/j.jqsrt.2003.08.012
  • Kim KW, Baek SW. Inverse surface radiation analysis in an axisymmetric cylindrical enclosure using a hybrid genetic algorithm. Numer Heat Transf Part A. 2004;46(4):367–381. doi: 10.1080/10407780490478533
  • Safavinejad A, Maruyama S, Mansouri SH, et al. Optimal boundary design of radiant enclosures using micro-genetic algorithm. J Therm Sci Technol. 2008;3(2):179–194. doi: 10.1299/jtst.3.179
  • Safavinejad A, Mansouri S, Sakurai A, et al. Optimal number and location of heaters in 2-d radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm. Appl Therm Eng. 2009;29(5–6):1075–1085. doi: 10.1016/j.applthermaleng.2008.05.025
  • Amiri H, Mansouri SH, Safavinejad A, et al. The optimal number and location of discrete radiant heaters in enclosures with the participating media using the micro genetic algorithm. Numer Heat Transf Part A. 2011;60(5):461–483. doi: 10.1080/10407782.2011.600597
  • Payan S, Farahmand A, Sarvari SH. Inverse boundary design radiation problem with radiative equilibrium in combustion enclosures with pso algorithm. Int Commun Heat Mass Transf. 2015;68:150–157. doi: 10.1016/j.icheatmasstransfer.2015.08.009
  • Sun S, Qi H, Zhao F, et al. Inverse geometry design of two-dimensional complex radiative enclosures using krill herd optimization algorithm. Appl Therm Eng. 2016;98:1104–1115. doi: 10.1016/j.applthermaleng.2016.01.017
  • Queipo NV, Haftka RT, Shyy W, et al. Surrogate-based analysis and optimization. Prog Aerosp Sci. 2005;41(1):1–28. doi: 10.1016/j.paerosci.2005.02.001
  • Howell JR, Daun K, Erturk H, et al. The use of inverse methods for the design and control of radiant sources. JSME Int J Ser B Fluids Therm Eng. 2003;46(4):470–478. doi: 10.1299/jsmeb.46.470
  • Yuen WW. RAD-NNET, a neural network based correlation developed for a realistic simulation of the non-gray radiative heat transfer effect in three-dimensional gas-particle mixtures. Int J Heat Mass Transf. 2009;52(13–14):3159–3168. doi: 10.1016/j.ijheatmasstransfer.2009.01.041
  • Yuen W, Tam W, Chow W. Assessment of radiative heat transfer characteristics of a combustion mixture in a three-dimensional enclosure using RAD-NETT (with application to a fire resistance test furnace). Int J Heat Mass Transf. 2014;68:383–390. doi: 10.1016/j.ijheatmasstransfer.2013.08.009
  • Yadav R, Balaji C, Venkateshan S. Inverse estimation of number and location of discrete heaters in radiant furnaces using artificial neural networks and genetic algorithm. J Quant Spectrosc Radiat Transf. 2019;226:127–137. doi: 10.1016/j.jqsrt.2018.12.031
  • Chai JC, Lee HS, Patankar SV. Finite volume method for radiation heat transfer. J Thermophys Heat Transf. 1994;8(3):419–425. doi: 10.2514/3.559
  • Denison MK, Webb BW. A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers. J Heat Transfer. 1993;115(4):1004–1012. doi: 10.1115/1.2911354
  • Yadav R, Chakravarthy B, Venkateshan S. Implementation of SLW model in the radiative heat transfer problems with particles and high temperature gradients. Int J Numer Methods Heat Fluid Flow. 2017;27(5):1128–1141. doi: 10.1108/HFF-03-2016-0095
  • Denison M, Webb BW. An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer. J Quant Spectrosc Radiat Transf. 1993;50(5):499–510. doi: 10.1016/0022-4073(93)90043-H
  • Solovjov VP, Webb BW. SLW modeling of radiative transfer in multicomponent gas mixtures. J Quant Spectrosc Radiat Transf. 2000;65(4):655–672. doi: 10.1016/S0022-4073(99)00133-8
  • Amiri H, Lari K. Comparison of global radiative models in two-dimensional enclosures at radiative equilibrium. Int J Therm Sci. 2016;104:423–436. doi: 10.1016/j.ijthermalsci.2016.01.020
  • Levenberg K. A method for the solution of certain non-linear problems in least squares. Quart Appl Math. 1944;2(2):164–168. doi: 10.1090/qam/10666
  • Møller MF. A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 1993;6(4):525–533. doi: 10.1016/S0893-6080(05)80056-5
  • MacKay DJ. Bayesian interpolation. Neural Comput. 1992;4(3):415–447. doi: 10.1162/neco.1992.4.3.415
  • Lenis YA, Maag G, de Oliveira CEL, et al. Effect of heat flux distribution profile on hydrogen concentration in an allothermal downdraft biomass gasification process: modeling study. J Energy Resour Technol. 2019;141(3): 031801, 1–10. doi: 10.1115/1.4041723
  • Lockwood F, Shah N. A new radiation solution method for incorporation in general combustion prediction procedures. In: Symposium (International) on Combustion; Vol. 18. London: Elsevier; 1981. p. 1405–1414.
  • Jamaluddin A, Smith P. Predicting radiative transfer in axisymmetric cylindrical enclosures using the discrete ordinates method. Combust Sci Technol. 1988;62(4–6):173–186. doi: 10.1080/00102208808924008
  • ANSYS. Version 14.0. Cannonsburg: ANSYS Inc.; 2014.
  • McKay MD, Beckman RJ, Conover WJ. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979;21(2):239–245.
  • MATLAB. Version 8.3.0 (R2014a). Natick (MA): The MathWorks Inc.; 2014.
  • Ingber L. Adaptive simulated annealing (ASA): lessons learned. Control Cybernet. 1996;25(1):33–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.