751
Views
2
CrossRef citations to date
0
Altmetric
Articles

Quantification of measurement error effects on conductivity reconstruction in electrical impedance tomography

ORCID Icon, & ORCID Icon
Pages 1669-1693 | Received 14 Jul 2019, Accepted 22 Apr 2020, Published online: 18 May 2020

References

  • Kolehmainen V, Vauhkonen M, Karjalainen PA, Kaipio JP. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns. Physiol Meas. 1997;18(4):289–303.
  • Borcea L. Electrical impedance tomography. Inverse Probl. 2002;18(6):99–136.
  • Holder D. Electrical impedance tomography: methods, history and applications. Boka Raton: CRC Press; 2004.
  • Seo JK, Woo EJ. Nonlinear inverse problems in imaging. West Sussex: John Wiley & Sons; 2012.
  • Vauhkonen M, Vadasz D, Karjalainen PA, Somersalo E, Kaipio JP. Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imag. 1998;17(2):285–293.
  • Borsic A Regularization methods for imaging from electrical measurements [Ph.D thesis]. Oxford Brookes University; 2002.
  • Karageorghis A, Lesnic D. The method of fundamental solutions for the inverse conductivity problem. Inverse Probl Sci Eng. 2010;18(4):567–583.
  • Lee K, Woo EJ, Seo JK. A fidelity-embedded regularization method for robust electrical impedance tomography. IEEE Trans Med Imag. 2017;37(9):1970–1977.
  • Nissinen A, Kolehmainen V, Kaipio JP. Reconstruction of domain boundary and conductivity in electrical impedance tomography using the approximation error approach. Int J Uncertain Quan. 2011;1(3):203–222.
  • Dardé J, Hyvönen N, Seppänen A, Staboulis S. Simultaneous reconstruction of outer boundary shape and admittivity distribution in electrical impedance tomography. SIAM J Imaging Sci. 2013;6(1):176–198.
  • Bardsley JM, Seppänen A, Solonen A, Haario H, Kaipio J. Randomize-then-optimize for sampling and uncertainty quantification in electrical impedance tomography. SIAM/ASA J Uncertain Quan. 2015;3(1):1136–1158.
  • Hyvönen N, Leinonen M. Stochastic Galerkin finite element method with local conductivity basis for electrical impedance tomography. SIAM/ASA J Uncertain Quan. 2015;3(1):998–1019.
  • Hyvönen N, Kaarnioja V, Mustonen L, Staboulis S. Polynomial collocation for handling an inaccurately known measurement configuration in electrical impedance tomography. SIAM J Appl Math. 2017;77(1):202–223.
  • Ren S, Soleimani M, Xu Y, Dong F. Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography. Inverse Probl Sci Eng. 2018;26(7):1037–1061.
  • Adler A. Accounting for erroneous electrode data in electrical impedance tomography. Physiol Meas. 2004;25(1):227–238.
  • Meeson S, Blott BH, Killingback AL. EIT data noise evaluation in the clinical environment. Physiol Meas. 1996;17(4A):33–38.
  • Frangi AR, Riu PJ, Rosell J, Viergever MA. Propagation of measurement noise through backprojection reconstruction in electrical impedance tomography. IEEE Trans Med Imag. 2002;21(6):566–578.
  • Seo JK, Woo EJ. Electrical tissue property imaging at low frequency using MREIT. IEEE Trans Biomed Eng. 2014;61(5):1390–1399.
  • Al-Hatib F. Patient-instrument connection errors in bioelectrical impedance measurement. Physiol Meas. 1998;19(2):285–296.
  • Lozano A, Rosell J, Pallás-Areny R. Errors in prolonged electrical impedance measurements due to electrode repositioning and postural changes. Physiol Meas. 1995;16(2):121–130.
  • Dardé J, Hakula H, Hyvönen N, Staboulis S, Somersalo E. Fine-tuning electrode information in electrical impedance tomography. Inverse Probl Imag. 2012;6(3):399–421.
  • Dardé J, Hyvönen N, Seppänen A, Staboulis S. Simultaneous recovery of admittivity and body shape in electrical impedance tomography: an experimental evaluation. Inverse Probl. 2013;29(8):085004.
  • Kourunen J, Savolainen T, Lehikoinen A, Vauhkonen M, Heikkinen LM. Suitability of a PXI platform for an electrical impedance tomography system. Meas Sci Technol. 2008;20(1):015503.
  • Lieberman C, Willcox K, Ghattas O. Parameter and state model reduction for large-scale statistical inverse problems. SIAM J Sci Comput. 2010;32(5):2523–2542.
  • Gehre M, Jin B. Expectation propagation for nonlinear inverse problems–with an application to electrical impedance tomography. J Comput Phys. 2014;259:513–535.
  • Leinonen M, Hakula H, Hyvönen N. Application of stochastic Galerkin FEM to the complete electrode model of electrical impedance tomography. J Comput Phys. 2014;269:181–200.
  • Adler A, Guardo R. Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans Med Imag. 1996;15(2):170–179.
  • Smith RC. Uncertainty quantification: theory, implementation, and applications. Philadelphia: SIAM; 2013.
  • Ghanem RG, Spanos PD. Stochastic finite elements: a spectral approach. New York: Courier Corporation; 2003.
  • Xiu D, Karniadakis GE. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput. 2002;24(2):619–644.
  • Babuška I, Nobile F, Tempone R. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 2010;52:317–355.
  • Kucherenko S, Klymenko OV, Shah N. Sobol' indices for problems defined in non-rectangular domains. Reliab Eng Syst Saf. 2017;167:218–231.
  • Cheng KS, Isaacson D, Newell JC, Gisser DG. Electrode models for electric current computed tomography. IEEE Trans Biomed Eng. 1989;36(9):918–924.
  • Somersalo E, Cheney M, Isaacson D. Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math. 1992;52(4):1023–1040.
  • Cheney M, Isaacson D, Newell JC. Electrical impedance tomography. SIAM Rev. 1999;41(1):85–101.
  • Tikhonov A, Arsenin V. Solutions of iIll-posed problems. New York: Winston; 1977.
  • Hua P, Woo EJ, Webster JG, Tompkins WJ. Iterative reconstruction methods using regularization and optimal current patterns in electrical impedance tomography. IEEE Trans Med Imag. 1991;10(4):621–628.
  • Hua P, Webster JG, Tompkins WJ. A regularised electrical impedance tomography reconstruction algorithm. Clin Phys Physiol Meas. 1988;9(4):137–141.
  • Cheney M, Isaacson D, Newell JC, Simske S, Goble J. NOSER: an algorithm for solving the inverse conductivity problem. Int J Imag Syst Technol. 1990;2(2):66–75.
  • Kim S, Lee EJ, Woo EJ, Seo JK. Asymptotic analysis of the membrane structure to sensitivity of frequency-difference electrical impedance tomography. Inverse Probl. 2012;28(7):075004.
  • Zhang T, Lee E, Seo JK. Anomaly depth detection in trans-admittance mammography: a formula independent of anomaly size or admittivity contrast. Inverse Probl. 2014;30(4):045003.
  • Zhou W, Bovik AC, Sheikh HR, Simoncelli EP. Image qualifty assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–612.
  • Walters R Towards stochastic fluid mechanics via polynomial chaos. In: 41st AIAA aerospace sciences meeting & exhibit. Reno, NV; 2003.
  • Hosder S, Walters R, Balch M Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference; 2007. p. 1939.
  • Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on least angle regression. J Comput Phys. 2011;230(6):2345–2367.
  • Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. Ann Stat. 2004;32(2):407–499.
  • Helton JC, Davis FJ. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf. 2003;81(1):23–69.
  • Sobol IM. Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp. 1995;1(4):407–414.
  • Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf. 2008;93(7):964–979.
  • Crestaux T, Le Maître O, Martinez JM. Polynomial chaos expansion for sensitivity analysis. Reliab Eng Syst Saf. 2009;94(7):1161–1172.
  • Ghaffari S, Magin T, Iaccarino G Uncertainty quantification of radiative heat flux modelling for Titan atmospheric entry. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition; 2010. p. 239.
  • Fisher RA. Statistical methods for research workers. Edinburgh: Genesis Publishing Pvt Ltd; 1925.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.