414
Views
2
CrossRef citations to date
0
Altmetric
Articles

A meshless computational approach for solving two-dimensional inverse time-fractional diffusion problem with non-local boundary condition

&
Pages 1773-1795 | Received 30 May 2019, Accepted 28 Apr 2020, Published online: 24 May 2020

References

  • Backus G, Gilbert F. Uniqueness in the inversion of inaccurate gross earth data. Phil Trans R Soc Lond A. 1970;266(1173):123–192.
  • Chadan K, Sabatier PC. Inverse problems in quantum scattering theory. Berlin: Springer Science and Business Media; 2012.
  • Craig IJD, Brown JC Inverse problems in astronomy: a guide to inversion strategies for remotely sensed data. Research supported by SERC. Boston (MA): Adam Hilger, Ltd.; 1986, 159 p.
  • Arridge SR. Optical tomography in medical imaging. Inverse Probl. 1999;15(2):R41.
  • Wunsch C. The ocean circulation inverse problem. New York: Cambridge University Press; 1996.
  • Baltes HP. Inverse scattering problems in optics. Berlin: Springer-Verlag; 1980; 1982. p. 423 1795.
  • Borden B. Mathematical problems in radar inverse scattering. Inverse Probl. 2001;18(1):R1.
  • Gintides D. Local uniqueness for the inverse scattering problem in acoustics via the faber-Krahn inequality. Inverse Probl. 2005;21(4):1195.
  • Hadamard J. Lectures on cauchy's problem in linear partial differential equations. Vol. 37. New Haven: Yale University Press; 1923.
  • Frey C. On non-local boundary value problems for elliptic operators [diss.]. Köln: Universität zu Köln; 2005.
  • Ghosh T, Lin Y-H, Xiao J. The calderon problem for variable coefficients nonlocal elliptic operators. Commun Partial Differ Eq. 2017;42(12):1923–1961.
  • Bhattacharyya S, Ghosh T, Uhlmann G Inverse problem for fractional-Laplacian with lower order non-local perturbations. arXiv preprint arXiv:1810.03567; 2018.
  • Dehghan M. Alternating direction implicit methods for two-dimensional diffusion with a non-local boundary condition. Int J Comput Math. 1999;72(3):349–366.
  • Dehghan M, Tatari M. Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions. Numer Methods Partial Differ Eq. 2008;24(3):924–938.
  • Abbasbandy S, Shirzadi A. A meshless method for two-dimensional diffusion equation with an integral condition. Eng Anal Bound Elem. 2010;34(12):1031–1037.
  • Abbasbandy S, Shirzadi A. MLPG method for two-dimensional diffusion equation with neumann's and non-classical boundary conditions. Appl Numer Math. 2011;61(2):170–180.
  • Roohani Ghehsareh H, Soltanalizadeh B, Abbasbandy S. A matrix formulation to the wave equation with non-local boundary condition. Int J Comput Math. 2011;88(8):1681–1696.
  • Soltanalizadeh B. Numerical analysis of the one-dimensional heat equation subject to a boundary integral specification. Opt Commun. 2011;284(8):2109–2112.
  • Kazem S, Rad JA. Radial basis functions method for solving of a non-local boundary value problem with neumann's boundary conditions. Appl Math Model. 2012;36(6):2360–2369.
  • Shahmorad S, Borhanifar A, Soltanalizadeh B. An approximation method based on matrix formulated algorithm for the heat equation with nonlocal boundary conditions. Comput Methods Appl Math. 2012;12(1):92–107.
  • Abbasbandy S, Ghehsareh HR, Alhuthali MS, et al. Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model. Eng Anal Bound Elem. 2014;39:121–128.
  • Soltanalizadeh B, Ghehsareh HR, Abbasbandy S. A super accurate shifted tau method for numerical computation of the sobolev-type differential equation with nonlocal boundary conditions. Appl Math Comput. 2014;236:683–692.
  • Dehghan M. Parameter determination in a partial differential equation from the overspecified data. Math Comput Model. 2005;41(2–3):196–213.
  • Dehghan M. A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Methods Partial Differ Eq. 2006;22(1):220–257.
  • Dehghan M. The one-dimensional heat equation subject to a boundary integral specification. Chaos, Solitons Fractals. 2007;32(2):661–675.
  • Dehghan M, Tatari M. Use of radial basis functions for solving the second-order parabolic equation with nonlocal boundary conditions. Numer Methods Partial Differ Eq. 2008;24(3):924–938.
  • Ta-Tsien L. A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis. J Comput Appl Math. 1989;28:49–62.
  • Ashyralyev A, Ozdemir Y. On nonlocal boundary value problems for hyperbolic-parabolic equations. Dordrecht: Springer; 2007. p. 131–140. (Mathematical Methods in Engineering).
  • Salkuyeh DK, Roohani Ghehsareh H. Convergence of the variational iteration method for the telegraph equation with integral conditions. Numer Methods Partial Differ Eq. 2011;27(6):1442–1455.
  • Abbasbandy S, Roohani Ghehsareh H. A new semi-analytical solution of the telegraph equation with integral condition. Zeitschrift Für Naturforschung A. 2011;66(12):760–768.
  • Shivanian E, Jafarabadi A. Numerical solution of two-dimensional inverse force function in the wave equation with nonlocal boundary conditions. Inverse Probl Sci Eng. 2017;25(12):1743–1767.
  • Havlin S, Ben-Avraham D. Diffusion in disordered media. Adv Phys. 1987;36(6):695–798.
  • Sokolov IM, Klafter J. From diffusion to anomalous diffusion: a century after einstein's brownian motion. Chaos. 2005;15(2):026103.
  • Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. Vol. 111. New York: Elsevier; 1974.
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Vol. 198. Amsterdam: Elsevier; 1998.
  • Uchaikin VV. Fractional derivatives for physicists and engineers. Vol. 2. Berlin: Springer; 2013.
  • Asl NA, Rostamy D. Identifying an unknown time-dependent boundary source in time-fractional diffusion equation with a non-local boundary condition. J Comput Appl Math. 2019;355:36–50.
  • Yan L, Yang F. The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition. Comput Math Appl. 2015;70(3):254–264.
  • Arendt W, Kunkel S, Kunze M. Diffusion with nonlocal boundary conditions. J Funct Anal. 2016;270(7):2483–2507.
  • Arendt W, Kunkel S, Kunze M. Diffusion with nonlocal robin boundary conditions. J Math Soc Jpn. 2018;70(4):1523–1556.
  • Fasshauer GE. Meshfree approximation methods with MATLAB. Vol. 6. Singapore: World Scientific; 2007.
  • Liu G-R, Gu Y-T. An introduction to meshfree methods and their programming. Berlin: Springer Science and Business Media; 2005.
  • Chen W, Fu Z-J, Chen C-S. Recent advances in radial basis function collocation methods. Heidelberg: Springer; 2014.
  • Kansa EJ. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput Math Appl. 1990;19(8–9):127–145.
  • Abbasbandy S, Roohani Ghehsareh H, Hashim I. A meshfree method for the solution of two-dimensional cubic nonlinear schrodinger equation. Eng Anal Bound Elem. 2013;37(6):885–898.
  • Shivanian E, Reza Khodabandehlo H. Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions. Eur Phys J Plus. 2014;129(11):241.
  • Bengt F, Flyer N. A primer on radial basis functions with applications to the geosciences. Philadelphia: SIAM; 2015.
  • Esfahani MH, Roohani Ghehsareh H, Kamal Etesami S. The extended method of approximate particular solutions to simulate two-dimensional electromagnetic scattering from arbitrary shaped anisotropic objects. Eng Anal Bound Elem. 2017;82:91–97.
  • Shirzadi A. Numerical solutions of 3D cauchy problems of elliptic operators in cylindrical domain using local weak equations and radial basis functions. Int J Comput Math. 2017;94(2):252–262.
  • Dehghan M, Abbaszadeh M. Numerical investigation based on direct meshless local petrov galerkin (direct MLPG) method for solving generalized zakharov system in one and two dimensions and generalized gross-Pitaevskii equation. Eng Comput. 2017;33(4):983–996.
  • Taleei A, Dehghan M. Direct meshless local petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic. Comput Methods Appl Mech Eng. 2014;278:479–498.
  • Dehghan M, Haghjoo-Saniji M. The local radial point interpolation meshless method for solving maxwell equations. Eng Comput. 2017;33(4):897–918.
  • Chen W, Ye L, Sun H. Fractional diffusion equations by the kansa method. Comput Math Appl. 2010;59(5):1614–1620.
  • Gu YT, Zhuang P, Liu F. An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput Model Eng Sci. 2010;56(3):303–334.
  • Dehghan M, Abbaszadeh M, Mohebbi A. An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and klein-Gordon equations. Eng Anal Bound Elem. 2015;50:412–434.
  • Shivanian E, Jafarabadi A. An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. J Comput Appl Math. 2017;325:18–33.
  • Roohani Ghehsareh H, Zaghian A, Mahmood Zabetzadeh S. The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation. Neural Comput Appl. 2018;29(10):745–754.
  • Roohani Ghehsareh H, Zaghian A, Raei M. A local weak form meshless method to simulate a variable order time-fractional mobile-immobile transport model. Eng Anal Bound Elem. 2018;90:63–75.
  • Roohani Ghehsareh H, Raei M, Zaghian A. Numerical simulation of a modified anomalous diffusion process with nonlinear source term by a local weak form meshless method. Eng Anal Bound Elem. 2019;98:64–76.
  • Atluri SN, Zhu T. A new meshless local petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech. 1998;22(2):117–127.
  • Atluri SN, Zhu TL. A new meshless local petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput Model Simul Eng. 1998;3:187–196.
  • Sun Z-Z, Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math. 2006;56(2):193–209.
  • Liu Q, Gu YT, Zhuang P, et al. An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech. 2011;48(1):1–12.
  • Wang JG, Liu GR. On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng. 2002;191(23–24):2611–2630.
  • Xiao JR, McCarthy MA. A local heaviside weighted meshless method for two-dimensional solids using radial basis functions. Comput Mech. 2003;31(3–4):301–315.
  • Kansa EJ, Aldredge RC, Ling L. Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem. 2009;33(7):940–950.
  • Atluri SN, Shen S. The meshless local petrov-Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element methods. Comput Model Eng Sci. 2002;3(1):11–51.
  • Dehghan M, Abbaszadeh M. Element free galerkin approach based on the reproducing kernel particle method for solving 2D fractional tricomi-type equation with robin boundary condition. Comput Math Appl. 2017;73(6):1270–1285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.