582
Views
1
CrossRef citations to date
0
Altmetric
Articles

The bi-Helmholtz equation with Cauchy conditions: ill-posedness and regularization methods

, &
Pages 17-39 | Received 15 Dec 2019, Accepted 28 Apr 2020, Published online: 22 May 2020

References

  • Beskos DE. Boundary element method in dynamic analysis: part II. Appl Mech Rev. 1997;50:149–197.
  • Cen JT, Wong FC. Dual formulation of multiple reciprocity method for the acoustic mode of a cavity with a thin partition. J Sound Vib. 1998;217(1):75–95.
  • Hall WS, Mao XQ. Boundary element investigation of irregular frequencies in electromagnetism scattering. Eng Anal Bound Elem. 1995;16:245–252.
  • Hong PL, Minh TL, Hoang QP. On a three dimensional Cauchy problem for inhomogeneous Helmholtz equation associated with perturbed wave number. J Comp Appl Math. 2018;335:86–98.
  • Marin L, Elliott L, Heggs PJ, et al. Conjugate gradient-boudary element solution to the Cauchy problem for Helmholtz-type equation. Comp Mech. 2003;31:367–377.
  • He SQ, Feng XF. A regularization method to solve a Cauchy problem for the two-dimensional modified Helmholtz equation. Mathematics. 2019;360(7):1–13.
  • He SQ, Feng XF. A mollification method with Dirichlet kernel to solve Cauchy problem for two-dimensional Helmholtz equation. Int J Wavelets Multiresolut Inf Process. 2019. doi:10.1142/S0219691319500292.
  • Koutsoumaris CC, Eptaimeros KG. A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen's nonlocal integral model in a finite body. Acta Mech. 2018;229:3629–3649.
  • Barati MR. Temperature and porosity effects on wave propagation in nanobeams using bi-Helmholtz nonlocal strain-gradient elasticity. Eur Phys J Plus. 2018;133(5):133–170.
  • Barati MR, Zenkour A. A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate. Compos Struc. 2017;168:885–892.
  • Barretta R, Fazelzadeh SA, Feo L, et al. Nonlocal inflected nano-beams: a stress-driven approach of bi-Helmholtz type. Compos Struc. 2018;200:239–245.
  • Gaspar C. Multi-level biharmonic and bi-Helmholtz interpolation with application to the boundary element method. Eng Anal Bound Elem. 2000;24:559–573.
  • Askham T. A stabilized separation of variables method for the modified biharmonic equation. J Sci Comput. 2019. doi:10.1007/s10915-018-0679-9.
  • D'autilia MC, Sgura I, Bozzini B. Parameter identification in ODE models with oscillatory dynamics: a Fourier regularization approach. Inv Prob. 2017;33(12):124009.
  • Khieu TT, Vo HH. Recovering the historical distribution for nonlinear space-fractional diffusion equation with temporally dependent thermal conductivity in higher dimensional space. J Comp Appl Math. 2019;345:114–126.
  • Li C, Fan Q. Multiplicative noise removal via combining total variation and wavelet frame. Int J Comp Math. 2018;95:2036–2055.
  • Berntsson F, Kozlov V, Mpinganzima L. Robin–Dirichlet algorithms for the Cauchy problem for the Helmholtz equation. Inverse Probl Sci Eng. 2017;26(7):1062–1078.
  • Caillé L, Delvare F, Marin L, et al. Fading regularization MFS algorithm for the Cauchy problem associated with the two-dimensional Helmholtz equation. Int J Solids Struct. 2017;125:122–133.
  • Hua Q, Gu Y, Qu W, et al. A meshless generalized finite difference method for inverse problems associated with three-dimensional inhomogeneous Helmholtz-type equations. Eng Anal Boun Elem. 2017;82:162–171.
  • Li M, Hon YC, Chen CS. A meshless method for solving nonhomogeneous Cauchy problems. Eng Anal Boun Elem. 2011;35:499–506.
  • Mohammadi M, Mokhtari R, Panahipour H. Solving two parabolic inverse problems with a nonlocal boundary condition in the reproducing kernel space. Appl Comp Math. 2014;13(1):91–106.
  • Yeganeh S, Mokhtari R, Hesthaven JS. Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer Math. 2017;57:685–707.
  • Chegini NG, Dahlke S, Friedrich U, et al. Piecewise tensor product wavelet bases by extensions and approximation rates. Math Comp. 2013;82:2157–2190.
  • Chegini N, Stevenson R. Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results. SIAM J Numer Anal. 2011;49(1):182–212.
  • Chegini N, Stevenson R. The adaptive tensor product wavelet scheme: sparse matrices and the application to singularly perturbed problems. IMA J Numer Anal. 2012;32(1):75–104.
  • Chegini N, Stevenson R. An adaptive wavelet method for semi-linear first-order system least squares. J Comp Meth Appl Math. 2015;15(4):439–463.
  • Chegini N, Stevenson R. Adaptive piecewise tensor product wavelets scheme for Laplace-interface problems. J Comput Appl Math. 2018;336:72–97.
  • Karimi M, Moradlou F, Hajipour M. On regularization and error estimates for the backward heat conduction problem with time-dependent thermal diffusivity factor. Commun Nonlinear Sci Numer Simul. 2018;63:21–37.
  • Kokila J, Nair MT. Fourier truncation method for the non-homogeneous time fractional backward heat conduction problem. Inverse Probl Sci Eng. 2019. doi:10.1080/17415977.2019.1580707.
  • Li XX, Li DG. A posteriori regularization parameter choice rule for truncation method for identifying the unknown source of the Poisson equation. Int J Partial Differ Equ. 2013. doi:10.1155/2013/590737.
  • Daubechies I. 1992. Ten lectures on wavelets. Society for Industrial and Applied Mathematics 3600. Philadelphia, PA: University City Science Center; 1992.
  • Hao DN, Reinhardt HJ, Schneider A. Regularization of a non-characteristic Cauchy problem for a parabolic equation. Inv Prob. 1995;11:1247–1263.
  • Kopriva DA. Implementing spectral methods for partial differential equations. Amsterdam: Springer; 2008.
  • Karimi M, Rezaee A. Regularization of the Cauchy problem for the Helmholtz equation by using Meyer wavelet. J Comp Appl Math. 2017;320:76–95.
  • Akkar HAR, Hadi WAH, Al-Dosari IHM. Implementation of sawtooth wavelet thresholding for noise cancellation in one dimensional signal. Int J Nanoelec Mate. 2019;12(1):67–74.
  • Divine OO, Isabona J. Optimum signal denoising based on wavelet shrinkage thresholding techniques: white Gaussian noise and white uniform noise case study. J Sci Eng Res. 2018;5(6):179–186.
  • Hedaoo P, Godbole SS. Wavelet thresholding apploach for image denoising. IJNSA. 2011;3:16–21.
  • Zhang Y, Ding W, Pan Z. Improved wavelet threshold for image de-noising. Fron Neu Sci. 2019;13(39):1–7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.