485
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Colour level set regularization for the electromagnetic imaging of highly discontinuous parameters in 3D

&
Pages 489-524 | Received 08 Feb 2020, Accepted 02 Jul 2020, Published online: 27 Jul 2020

References

  • Abascal JFPJ, Lambert M, Lesselier D, et al. 3-d eddy-current imaging of metal tubes by gradient-based, controlled evolution of level sets. IEEE Trans Magnetics. 2008;44(12):4721–4729. doi:10.1109/TMAG.2008.2004265.
  • Alvarez D, Dorn O, Irishina N, et al. Crack reconstruction using a level-set strategy. J Comput Phys. 2009;228(16):5710–5721. doi:10.1016/j.jcp.2009.04.038.
  • Dorn O, Hiles A. A level set method for magnetic induction tomography of boxes in 3d. In Lesselier D. et al. editor, Proceedings XXII International Workshop on Electromagnetic Nondestructive Evaluation (ENDE2017) Saclay, France, September 2017, Electromagnetic Nondestructive Evaluation – Vol. XXI. IOS Press; 2018. Available from: doi:http://ebooks.iospress.nl/volumearticle/49010, 10.3233/978-1-61499-836-5-33.
  • Hiles AJ, Dorn O. Sparsity and level set regularization for near -- field electromagnetic imaging in 3d. Inverse Probl. 2020 Jan;36(2):025012.
  • González-Rodríguez P, Kindelan M, Moscoso M, et al. History matching problem in reservoir engineering using the propagation-backpropagation method. Inverse Probl. 2005;21:565–590.
  • Villegas R, Dorn O, Kindelan M. Imaging low sensitivity regions in petroleum reservoirs using topological perturbations and level sets. J Inverse Ill-Posed Probl. 2007;15(2):199–223. doi:10.1515/JIIP.2007.011.
  • Villegas R, Dorn O. Monitoring 3d reservoirs from csem data using a level set technique. In Proceedings ECMOR XII, 2010. doi:10.3997/2214-4609.20144973.
  • Dorn O, Prieto KE. From data to images: a shape based approach for fluorescence tomography. In Science: Image In Action. World Scientific; 2012. p. 255–266.
  • Prieto K, Dorn O. Sparsity and level set regularization for diffuse optical tomography using a transport model in 2d. Inverse Probl. 2016;33(1):014001.
  • Dorn O, Lesselier D. Level set techniques for structural inversion in medical imaging. In Suri JS. and Farag A. editors. Deformable models: theory and biomaterial applications. p. 61–90. New York: Springer-Verlag; 2007. doi:10.1007/978-0-387-68413-0_3.
  • Dorn O, Ascher U. Shape reconstruction in 3d electromagnetic induction tomography using a level set technique. In Proceedings of the 23rd International Review of Progress in Applied Computational Electromagnetics Conference ACES 2007, 2007 Mar 19–23; Verona, Italy; 2007. p. 695–700.
  • Wu Y, Dorn O. A level set method for shape reconstruction in seismic full waveform inversion using a linear elastic model in 2d. J Phys Conf Ser. 2018;1131:012001. doi:10.1088/1742-6596/1131/1/012001.
  • Irishina N, Alvarez D, Dorn O, et al. Structural level set inversion for microwave breast screening. Inverse Probl. 2010;26:035015. doi:10.1088/0266-5611/26/3/035015.
  • Al Hosani E, Soleimani M. Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm. Phil Trans R Soc A. 2016;374:20150332. Available from: http://dx.doi.org/10.1098/rsta.2015.0332.
  • Dorn O, Villegas R. History matching of petroleum reservoirs using a level set technique. Inverse Probl. 2008;24:035015. doi:10.1088/0266-5611/24/3/035015.
  • Aghasi A, Kilmer M, Miller EL. Parametric level set methods for inverse problems. SIAM J Imaging Sci. 2011;4(2):618–650.
  • Liu D, Khambampati AK, Kim S, et al. Multi-phase flow monitoring with electrical impedance tomography using level set based method. Nuclear Engin Design. 2015;289:108–116.
  • Liu D, Khambampati AK, Du J. A parametric level set method for electrical impedance tomography. IEEE Trans Med Imaging. 2017;37(2):451–460.
  • Liu D, Zhao Y, Khambampati AK, et al. A parametric level set method for imaging multiphase conductivity using electrical impedance tomography. IEEE Trans Comput Imaging. 2018;4(4):552–561.
  • Liu D, Smyl D, Du J. A parametric level set-based approach to difference imaging in electrical impedance tomography. IEEE Trans Med Imaging. 2018;38(1):145–155.
  • Liu D, Du J. A moving morphable components based shape reconstruction framework for electrical impedance tomography. IEEE Trans Med Imaging. 2019;38(12):2937–2948.
  • Liu D, Gu D, Smyl D. B-spline level set method for shape reconstruction in electrical impedance tomography. IEEE Trans Med Imaging. 2020;39(6):1917–1929.
  • Dorn O, Lesselier D. Level set methods for inverse scattering. Inverse Probl. 2006;22:R67–R131.
  • Dorn O, Lesselier D. Level set methods for inverse scattering -- some recent developments. Inverse Probl. 2009;25:125001.
  • Natterer F. The mathematics of computerized tomography. Philadelphia: Society for Industrial and Applied Mathematics; 2001.
  • Swierczynski P, Papiez BW, Schnabel JA, et al. A level-set approach to joint image segmentation and registration with application to ct lung imaging. Comput Med Imaging Graph. 2018;65:58–68.
  • Bieberle M, Hampel U. Level-set reconstruction algorithm for ultrafast limited-angle x-ray computed tomography of two-phase flows. Phil Trans R Soc A. 2015;373:20140395. Available from: http://dx.doi.org/10.1098/rsta.2014.0395.
  • Natterer F, Wübbeling F. Mathematical methods in image reconstruction. SIAM, 2001. (Mathematical Modeling and Computation Series).
  • Whitaker R, Elangovan V. A direct approach to estimating surfaces in tomographic data. Med Image Anal. 2002;6:235–249. Available form: https://doi.org/10.1016/S1361-8415(02)00082-8.
  • Yoon S, Pineda AR, Fahrig R. Simultaneous segmentation and reconstruction: a level set method approach for limited view computed tomography. Med. Phys.. 2010;37(5):2329–2340.
  • Soleimani M, Lionheart AJ, Peyton, Ma X. Image reconstruction in 3d magnetic induction tomography using a fem forward model. In Proceedings 3rd World Congress on Industrial Process Tomography, Banff, Canada, 2003 Sep 2–5, Electromagnetic nondestructive evaluation -- volume XXI. International Society for Industrial Process Tomography; 2003. p.252–255. Available form: https://www.isipt.org/world-congress/3.html.
  • Ma L, Soleimani M. Magnetic induction tomography methods and applications: a review. Meas Sci Technol. 2017;28:072001.
  • Chen X. Computational methods for electromagnetic inverse scattering. Singapore: IEEE Press, Wiley; 2018.
  • Colton D, Kress R. Inverse acoustic and electromagnetic scattering theory. 3 ed. Vol. 93 of Applied Mathematical Sciences. Springer Science and Business Media; 2013.
  • Zhdanov MS. Inverse theory and applications in geophysics. 2nd ed. Amsterdam: Elsevier; 2015. (Cambridge monographs on applied and computational mathematics).
  • Brown BM, Marletta M, Reyes JM. Uniqueness for an inverse problem in electromagnetism with partial data. J Differ Equ. 2016;260:6525–6547.
  • Caro P, Ola P, Salo M. Inverse boundary value problem for maxwell equations with local data. Commun Partial Differ Equ. 2009;34(11):1425–1464.
  • Hettlich F. The domain derivative of time-harmonic electromagnetic waves at interfaces. Math Methods Appl Sci. 2012;35:1681–1689.
  • Hintermüller M, Laurain A, Yousept I. Shape sensitivities for an inverse problem in magnetic induction tomography based on the eddy current model. Inverse Probl. 2015 May;31(6):065006.
  • Ola P, Päivärinta L, Somersalo E. An inverse boundary value problem in electrodynamics. Duke Math J. 1993;70(3):617–653.
  • Somersalo E, Isaacson D, Cheney M. A linearized inverse boundary value problem for maxwell's equations. J Comput Appl Math. 1992;42:123–136.
  • Dorn O, Bertete-Aguirre H, Berryman JG, et al. A nonlinear inversion method for 3d electromagnetic imaging using adjoint fields. Inverse Probl. 1999;15(6):1523.
  • Dorn O, Bertete-Aguirre H, Berryman JG, et al. Sensitivity analysis of a nonlinear inversion method for 3d electromagnetic imaging in anisotropic media. Inverse Probl. 2002;18(2):285.
  • Lionheart WRB, Soleimani M, Peyton AJ. Sensitivity analysis of 3d magnetic induction tomography (mit). In Proceedings 3rd World Congress on Industrial Process Tomography, Banff, Canada, 2003 Sep 2–5. International Society for Industrial Process Tomography; 2003. p. 239–244. Available from: https://www.isipt.org/world-congress/3.html.
  • McGillivray PR, Oldenburg DW, Ellis RG, et al. Calculation of sensitivities for the frequency-domain electromagnetic problem. Geophys J Int. 1994;116:1–4.
  • Soleimani M, Lionheart WRB, Dorn O. Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data. Inverse Probl Sci Eng. 2006;14(2):193–210.
  • Dorn O, Miller E, Rappaport C. A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse Probl. 2000;16:492–506.
  • Hiles AJ. Novel algorithms for magnetic induction tomography with applications in security screening [PhD thesis]. Manchester: The University of Manchester; 2020.
  • Soleimani M, Lionheart WRB, Riedel CH, et al. Forward problem in 3d magnetic induction tomography (mit). In Proceedings 3rd World Congress on Industrial Process Tomography, Banff, Canada, 2003 Sep 2–5, Electromagnetic nondestructive evaluation – Vol. XXI. International Society for Industrial Process Tomography; 2003. p. 275–280. Available from: https://www.isipt.org/world-congress/3.html.
  • Jin Q, Wang W. Landweber iteration of Kaczmarz type with general non-smooth convex penalty functional. Inverse Probl. 2013;29(8):085001. 22pp.
  • Kaltenbacher B, Neubauer A, Scherzer O. Iterative regularization methods for nonlinear ill-Posed problems. Berlin: de Gruyter; 2008.
  • Leitão A, Marques Alves M. On landweber-Kaczmarz methods for regularizing systems of ill-posed equations in banach spaces. Inverse Probl. 2012;28:104008.
  • Margotti F, Rieder A, Leitão A. A Kaczmarz version of the reginn-landweber iteration for ill-posed problems in banach spaces. SIAM J Numer Anal. 2014;52(3):1439–1465.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): The MIT Press; 2016.
  • Burger M. A level set method for inverse problems. Inverse Probl. 2001;17(5):1327–1355.
  • Litman A, Lesselier D, Santosa D. Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set. Inverse Probl. 1998;14:485–706.
  • Santosa F. A level-set approach for inverse problems involving obstacles. ESAIM Control Optim Calculus Variations. 1996;1:17–33.
  • Vese LA, Chan TF. A multiphase level set framework for image segmentation using the Mumford–Shah model. Int J Comput Vis. 2002;50:271–93.
  • Osher S, Fedkiw R. Level set method and dynamic implicit surfaces. Vol. 153, Applied mathematical sciences. New York: Springer; 2003.
  • Sethian J. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computers visions and material sciences. New York: Cambridge University Press; 1996. (Cambridge Monographs on Applied and Computational Mathematics).
  • Villegas R, Etienam C, Dorn O. Shape and distributed parameter estimation for history matching using a modified ensemble kalman filter and level sets. Inverse Probl Sci Eng. 2020;28(2):175–195. doi:10.1080/17415977.2019.1583751
  • Villegas R, Dorn O, Moscoso M, et al. Reservoir characterization using stochastic initializations and level sets. Comput Math Appl. 2008;56(3):697–708. doi:10.1016/j.camwa.2008.02.026.
  • Haber E. Quasi-newton methods for large scale electromagnetic inverse problems. Inverse Probl. 2005;21:305–323.
  • Haber E, Ascher UM. Fast finite volume simulation of 3d electromagnetic problems with highly discontinuous coefficients. SIAM J Sci Comput. 2001;22(6):1943–1961.
  • Haber E, Ascher UM, Aruliah DA, et al. Fast simulation of 3d electromagnetic problems using potentials. J Comput Phys. 2000;163(1):150–171.
  • Aruliah D. Fast solvers for time-harmonic Maxwell's equations in 3D [PhD thesis]. Vancouver: University of British Columbia; 2001.
  • Incorvaia G, Dorn O. 2d through-the-wall radar imaging using a level set approach. In 2019 Photonics & Electromagnetics Research Symposium (PIERS), Rome, Italy, 17–20 June. p. 63–72. IEEE Explore; 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.