366
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of Se-adenosyl-L-selenohomocysteine selenoxide

, , &
Pages 135-144 | Received 20 Aug 2014, Accepted 16 Oct 2014, Published online: 24 Nov 2014

References

  • Mudd SH, Cantoni GL. Selenomethionine in enzymatic transmethylations. Nature. 1957;180:1052. doi: 10.1038/1801052a0
  • Wrobel K, Wrobel K, Caruso JA. Selenium speciation in low molecular weight fraction of Se-enriched yeasts by HPLC-ICP-MS: detection of selenoadenosylmethionine. J Anal At Spectrom. 2003;17:1048–1054. doi: 10.1039/b200920j
  • Thomson CD. Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr. 2004;58:391–402. doi: 10.1038/sj.ejcn.1601800
  • Tinggi U. Selenium toxicity and its adverse health effects. Rev Food Nutr Tox. 2005;4:29–55.
  • Reilly C. Selenium in food and health. 2nd ed. New York: Springer; 2006.
  • Gammelgaard B, Gabel-Jensen C, Sturup S, Hansen HR. Complementary use of molecular and element-specific mass spectrometry for identification of selenium compounds related to human selenium metabolism. Anal Bioanal Chem. 2008;390:1691–1706. doi: 10.1007/s00216-007-1788-8
  • Lenz M, Lens PNL. The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ. 2009;407:3620–3633. doi: 10.1016/j.scitotenv.2008.07.056
  • Ogra Y, Kitaguchi T, Ishiwata K, Suzuki N, Toida T, Suzuki KT. Speciation of selenomethionine metabolites in wheat germ extract. Metallomics. 2009;1:78–86. doi: 10.1039/b813118j
  • Rao Y, McCooeye M, Windust A, Bramanti E, D'Ulivo A, Mester Z. Mapping of selenium metabolic pathway in yeast by liquid chromatography-orbitrap mass spectrometry. Anal Chem. 2010;82:8121–8130. doi: 10.1021/ac1011798
  • Rayman MP. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9
  • Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN. Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci. 2014;39:112–120. doi: 10.1016/j.tibs.2013.12.007
  • B'Hymer C, Caruso JA. Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr A. 2006;1114:1–20. doi: 10.1016/j.chroma.2006.02.063
  • Finkelstein JD. Methionine metabolism in mammals. J Nutr Biochem. 1990;1:228–237. doi: 10.1016/0955-2863(90)90070-2
  • Loenen WAM. S-adenosylmethionine: jack of all trades and master of everything? Biochem Soc Trans. 2006;34:330–333. doi: 10.1042/BST20060330
  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP. S-Adenosylmethionine and methylation. FASEB J. 1996;10:471–480.
  • Struck A-W, Thompson ML, Wong LS, Micklefield J. S-Adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem. 2012;13:2642–2655. doi: 10.1002/cbic.201200556
  • Stolowitz ML, Minch MJ. S-Adenosyl-l-methionine and S-Adenosyl-l-homocysteine, an NMR study. J Am Chem Soc. 1981;103:6015–6019. doi: 10.1021/ja00410a004
  • Duerre JA. Preparation and properties of S-adenosyl-l-homocysteine, S-adenosyl-l-homocysteine sulfoxide and S-ribosyl-l-homocysteine. Arch Biochem Biophys. 1962;96:70–76. doi: 10.1016/0003-9861(62)90453-8
  • Biastoff S, Teuber M, Zhou ZS, Drager B. Colorimetric activity measurement of a recombinant putrescine N-methyltransferase from Datura stramonium. Planta Med. 2006;72:1136–1141. doi: 10.1055/s-2006-947191
  • Duerre JA, Salisbury L, Miller CH. Preparation and characterization of sulfoxides of S-adenosyl-l-homocysteine and S-ribosyl-l-homocysteine. Anal Biochem. 1970;35:505–515. doi: 10.1016/0003-2697(70)90213-7
  • Rekunova VN, Rudakova IP, Yurkevich AM. Synthesis of potential inhibitors of transmethylases. Tetrahedron Let. 1973;14:3811–3814. doi: 10.1016/S0040-4039(01)96057-5
  • Borchardt RT, Wu YS. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 1. Modification of the amino acid portion of S-adenosylhomocysteine. J Med Chem. 1974;17:862–868. doi: 10.1021/jm00254a016
  • Guerard C, Breard M, Courtois F, Drujon T, Ploux O. Synthesis and evaluation of analogues of S-adenosyl-l-methionine, as inhibitors of the E. coli cyclopropane fatty acid synthase. Bioorg Med Chem Lett. 2004;14:1661–1664. doi: 10.1016/j.bmcl.2004.01.051
  • Hickey SF, Hammond MC. Structure-guided design of fluorescent S-adenosylmethionine analogs for a high-throughput screen to target SAM-I riboswitch RNAs. Chem Biol. 2014;21:345–356. doi: 10.1016/j.chembiol.2014.01.004
  • Coward JK, D'Urso-Scott M, Sweet WD. Inhibition of catechol-O-methyltransferase by S-adenosylhomocysteine and S-adenosylhomocysteine sulfoxide, a potential transition-state analog. Biochem Pharmacol. 1972;21:1200–1203. doi: 10.1016/0006-2952(72)90114-1
  • Gillet L, Looze Y, Deconinck M, Leonis J. Binding capacities of various analogues of S-adenosyl-l-homocysteine to protein methyltransferase II from human erythrocytes. Experientia. 1979;35:1007–1009. doi: 10.1007/BF01949909
  • Pugh CS, Borchardt RT. Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry. 1982;21:1535–1541. doi: 10.1021/bi00536a011
  • Zainal HA, Wolf WR, Waters RM. An NMR spectroscopic investigation of the oxidation reactions of DL-selenomethionine. J Chem Technol Biotechnol. 1998;72:38–44. doi: 10.1002/(SICI)1097-4660(199805)72:1<38::AID-JCTB863>3.0.CO;2-R
  • Schoneich C. Redox processes of methionine relevant to β-amyloid oxidation and Alzheimer's disease. Arch Biochem Biophys. 2002;397:370–376. doi: 10.1006/abbi.2001.2621
  • Jacob C, Giles GI, Giles NM, Sies H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew Chem Int Ed Engl. 2003;42:4742–4758. doi: 10.1002/anie.200300573
  • Block E, Birringer M, Jiang W, Nakahodo T, Thompson HJ, Toscano PJ, Uzar H, Zhang X, Zhu Z. Allium chemistry: synthesis, natural occurrence, biological activity, and chemistry of Se-alk(en)ylselenocysteines and their γ-glutamyl derivatives and oxidation products. J Agric Food Chem. 2001;49:458–470. doi: 10.1021/jf001097b
  • Ritchey JA, Davis BM, Pleban PA, Bayse CA. Experimental and theoretical evidence for cyclic selenurane formation during selenomethionine oxidation. Org Biomol Chem. 2005;3:4337–4342. doi: 10.1039/b513238j
  • Isab AA. A 1H NMR study of the reaction of Gold(III) with DL-seleno-methionine in aqueous solution. Inorgan Chim Acta. 1983;80:L3–L4. doi: 10.1016/S0020-1693(00)91228-3
  • Davis FA, Reddy RT. Asymmetric oxidation of simple selenides to selenoxides in high enantiopurity – stereochemical aspects of the allyl selenoxide/allyl selenenate rearrangement. J Org Chem. 1992;57:2599–2606. doi: 10.1021/jo00035a014
  • Kurose N, Takahashi T, Koizumi T. First synthesis of optically pure selenuranes and stereoselective alkaline hydrolysis. Their application to asymmetric [2,3] sigmatropic rearrangements of allylic selenoxides. Tetrahedron. 1997;53:12115–12129. doi: 10.1016/S0040-4020(97)00546-2
  • Uden PC, Bird SM, Kotrebai M, Nolibos P, Tyson JF, Block E, Denoyer E. Analytical selenoamino acid studies by chromatography with interfaced atomic mass spectrometry and atomic emission spectral detection. Fresenius J Analyt Chem. 1998;362:447–456. doi: 10.1007/s002160051105
  • Gammelgaard B, Cornett C, Olsen J, Bendahl L, Hansen SH. Combination of LC-ICP-MS, LC-MS and NMR for investigation of the oxidative degradation of selenomethionine. Talanta. 2003;59:1165–1171. doi: 10.1016/S0039-9140(03)00026-2
  • Cooper AJL, Meister A. Enzymatic oxidation of l-homocysteine. Arch Biochem Biophys. 1985;239:556–566. doi: 10.1016/0003-9861(85)90725-8
  • Zhou ZS, Smith AE, Matthews RG. l-Selenohomocysteine: one-step synthesis from l-selenomethionine and kinetic analysis as substrate for methionine synthases. Bioorg Med Chem Lett. 2000;10:2471–2475. doi: 10.1016/S0960-894X(00)00498-4
  • Banica A, Culetu A, Banica F-G. Electrochemical and EQCM investigation of l-selenomethionine in adsorbed state at gold electrodes. J Electroanalyt Chem. 2007;599:100–110. doi: 10.1016/j.jelechem.2006.09.023
  • Harman LS, Mottley C, Mason RP. Free radical metabolites of l-cysteine oxidation. J Biol Chem. 1984;259:5606–5611.
  • Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12:746–754. doi: 10.1016/j.cbpa.2008.07.028
  • Devarie-Baez NO, Zhang D, Li S, Whorton AR, Xian M. Direct methods for detection of protein S-nitrosylation. Methods. 2013;62:171–176. doi: 10.1016/j.ymeth.2013.04.018
  • Sasaki E, Zhang X, Sun HG, Lu M-YJ, Liu T-L, Ou A, Li J-Y, Chen Y-H, Ealick SE, Liu H-W. Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature. 2014;510:427–431.
  • Iwaoka M, Arai K. From sulfur to selenium. A new research area in chemical biology and biological chemistry. Curr Chem Biol. 2013;7:2–24. doi: 10.2174/2212796811307010002
  • Zhou ZS, Flohr A, Hilvert D. An antibody-catalyzed allylic sulfoxide-sulfenate rearrangement. J Org Chem. 1999;64:8334–8341. doi: 10.1021/jo991299a
  • Zhou ZS, Peariso K, Penner-Hahn JE, Matthews RG. Identification of the zinc ligands in cobalamin-independent methionine synthase (MetE) from Escherichia coli. Biochemistry. 1999;38:15915–15926. doi: 10.1021/bi992062b
  • Matthews RG, Smith AE, Zhou ZS, Taurog RE, Bandarian V, Evans JC, Ludwig M. Cobalamin-dependent and cobalamin-independent methionine synthases: are there two solutions to the same chemical problem? Helv Chim Acta. 2003;86:3939–3954. doi: 10.1002/hlca.200390329
  • Mosley SL, Bakke BA, Sadler JM, Sunkara NK, Dorgan KM, Zhou ZS, Seley-Radtke KL. Carbocyclic pyrimidine nucleosides as inhibitors of S-adenosylhomocysteine hydrolase. Bioorg Med Chem Lett. 2006;14:7967–7971. doi: 10.1016/j.bmc.2006.07.052
  • Zang T, Dai S, Chen D, Lee BWK, Liu S, Karger BL, Zhou ZS. Chemical methods for the detection of protein N-homocysteinylation via selective reactions with aldehydes. Anal Chem. 2009;81:9065–9071. doi: 10.1021/ac9017132
  • Wang Z, Rejtar T, Zhou ZS, Karger BL. Desulfurization of cysteine-containing peptides resulting from sample preparation for protein characterization by mass spectrometry. Rapid Commun Mass Spectrom. 2010;24:267–275. doi: 10.1002/rcm.4383
  • Zhou ZS, Jiang N, Hilvert D. An antibody-catalyzed selenoxide elimination. J Am Chem Soc. 1997;119:3623–3624. doi: 10.1021/ja963748j
  • Alfaro JF, Gillies LA, Sun HG, Dai S, Zang T, Klaene JJ, Kim BJ, Lowenson JD, Clarke SG, Karger BL, Zhou ZS. Chemo-enzymatic detection of protein isoaspartate using protein isoaspartate methyltransferase and hydrazine trapping. Anal Chem. 2008;80:3882–3889. doi: 10.1021/ac800251q
  • Chen T, Nayak N, Majee SM, Lowenson J, Schafermeyer KR, Eliopoulos AC, Lloyd TD, Dinkins R, Perry SE, Forsthoefel NR, Clarke SG, Vernon DM, Zhou ZS, Rejtar T, Downie AB. Substrates of the Arabidopsis thaliana protein isoaspartyl methyltransferase 1 identified using phage display and biopanning. J Biol Chem. 2010;285:37281–37292. doi: 10.1074/jbc.M110.157008
  • Liu M, Cheetham J, Cauchon N, Ostovic J, Ni W, Ren D, Zhou ZS. Protein isoaspartate methyltransferase-mediated 18O-labeling of isoaspartic acid for mass spectrometry analysis. Anal Chem. 2012;84:1056–1062. doi: 10.1021/ac202652z
  • Gui S, Wooderchak-Donahue WL, Zang T, Chen D, Daly MP, Zhou ZS, Hevel JM. Substrate-induced control of product formation by protein arginine methyltransferase 1. Biochemistry. 2013;52:199–209. doi: 10.1021/bi301283t
  • De Silva V, Woznichak MM, Burns KL, Grant KB, May SW. Selenium redox cycling in the protective effects of organoselenides against oxidant-induced DNA damage. J Am Chem Soc. 2004;126:2409–2413. doi: 10.1021/ja037294j
  • Iwig DF, Booker SJ. Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-l-methionine. Biochemistry. 2004;43:13496–13509. doi: 10.1021/bi048693+
  • Willnow S, Martin M, Luscher B, Weinhold E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. ChemBioChem. 2012;13:1167–1173. doi: 10.1002/cbic.201100781
  • Bothwell IR, Luo M. Large-scale, protection-free synthesis of Se-adenosyl-l-selenomethionine analogues and their application as cofactor surrogates of methyltransferases. Org Lett. 2014;16:3056–3059. doi: 10.1021/ol501169y
  • Scovill JP, Thigpen DL II, Lemley PV. A convenient method for the synthesis and raney nickel desulfurization of 5′-deoxy-5′-methylthioadenosine. Phosphorus, Sulfur Silicon. 1993;85:149–152. doi: 10.1080/10426509308038193
  • Orlov IG, Markin VS, Moiseev YV, Khurgin UI. Infrared spectra of amino acids and peptides. Chem Nat Cpds. 1967;3:163–166. doi: 10.1007/BF00567992
  • Paetzold R, Lindner U, Bochmann G, Reich P. Dimethyl-und diathylselenoxide sowie ihre oxoniumsalze. darstellung, eigenschaften und schwingungsspektren. Zeits Anorgan Allge Chemie. 1967;352:295–308. doi: 10.1002/zaac.19673520513
  • Wallace TJ, Mahon JJ. Reactions of thiols with sulfoxides. III. Catalysis by acids and bases. J Org Chem. 1965;30:1502–1506. doi: 10.1021/jo01016a039
  • Firouzabadi H, Jamalian A. Reduction of oxygenated organosulfur compounds. J Sulfur Chem. 2008;29:53–97. doi: 10.1080/17415990701684776
  • Zhao G, Wan W, Mansouri S, Alfaro JF, Bassler BL, Cornell KA, Zhou ZS. Chemical synthesis of S-ribosyl-l-homocysteine and activity assay as a LuxS substrate. Bioorg Med Chem Lett. 2003;13:3897–3900. doi: 10.1016/j.bmcl.2003.09.015
  • Ramalingam K, Woodard RW. A convenient synthesis of S-(5′-deoxy-5′-adenosyl)-(±)-2-methylhomocysteine. Tetrahedron Lett. 1985;26:1135–1136. doi: 10.1016/S0040-4039(00)98415-6
  • Robins MJ, Hansske F, Wnuk SF, Kanai T. Nucleic acid related compounds. 66. Improved syntheses of 5′-chloro-5′-deoxy- and 5′-S-aryl(or alkyl)-5′-thionucleosides. Can J Chem. 1991;69:1468–1474. doi: 10.1139/v91-217
  • Casiot C, Vacchina V, Chassaigne H, Szpunar J, Potin-Gautier M, Lobinski R. An approach to the identification of selenium species in yeast extracts using pneumatically-assisted electrospray tandem mass spectrometry. Anal Commun. 1999;36:77–80. doi: 10.1039/a900319c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.