91
Views
3
CrossRef citations to date
0
Altmetric
Articles

An ab initio study on properties of cationic chalcogen bonds in XF2Y+⋯NCZ (X═H, CN, F; Y═S, Se; Z═H, Cl, Br) complexes

&
Pages 83-97 | Received 09 Jun 2016, Accepted 29 Sep 2016, Published online: 15 Oct 2016

References

  • Müller-Dethlefs K, Hobza P. Noncovalent interactions: a challenge for experiment and theory. Chem Rev. 2000;100:143–168. doi: 10.1021/cr9900331
  • Strekowski L, Wilson B. Noncovalent interactions with DNA: an overview. Mutat Res Fund Mol Mech Mut. 2007;623:3–13. doi: 10.1016/j.mrfmmm.2007.03.008
  • Scheiner S. Hydrogen bonding. A theoretical perspective. New York: Oxford University Press; 1997.
  • Metrangolo P, Resnati G, Pilati T, et al. Halogen bonding in crystal engineering. Berlin: Springer; 2008.
  • Voth AR, Khuu P, Oishi K, et al. Halogen bonds as orthogonal molecular interactions to hydrogen bonds. Nature Chem. 2009;1:74–79. doi: 10.1038/nchem.112
  • Li Q, Li R, Liu Z, et al. Interplay between halogen bond and lithium bond in MCN─LiCN─XCCH (M═H, Li, and Na; X═Cl, Br, and I) complex: The enhancement of halogen bond by a lithium bond. J Comput Chem. 2011;32:3296–3303. doi: 10.1002/jcc.21916
  • Esrafili MD, Ahmadi B. A theoretical investigation on the nature of Cl⋯N and Br⋯N halogen bonds in FArX⋯NCY complexes (X═Cl, Br and Y═H, F, Cl, Br, OH, NH2, CH3 and CN). Comput Theor Chem. 2012;997:77–82. doi: 10.1016/j.comptc.2012.07.038
  • Li Q, Li R, Yi S, et al. The single-electron hydrogen, lithium, and halogen bonds with HBe, H2B, and H3C radicals as the electron donor: an ab initio study. Struct Chem. 2012;23:411–416. doi: 10.1007/s11224-011-9884-y
  • Clark T, Hennemann M, Murray JS, et al. Halogen bonding: the σ-hole. J Mol Model. 2007;13:291–296. doi: 10.1007/s00894-006-0130-2
  • Politzer P, Murray JS, Lane P. Σ-hole bonding and hydrogen bonding: competitive interactions. Int J Quantum Chem. 2007;107:3046–3052. doi: 10.1002/qua.21419
  • Politzer P, Murray JS, Concha MC. σ-hole bonding between like atoms; a fallacy of atomic charges. J Mol Model. 2008;14:659–665. doi: 10.1007/s00894-008-0280-5
  • Metrangolo P, Murray JS, Pilati T, et al. The fluorine atom as a halogen bond donor, viz. a positive site. CrystEngComm. 2011;13:6593–6596. doi: 10.1039/c1ce05554b
  • Murray JS, Lane P, Clark T, et al. σ-Holes, π-holes and electrostatically-driven interactions. J Mol Model. 2012;18:541–548. doi: 10.1007/s00894-011-1089-1
  • Bundhun A, Ramasami P, Murray J, et al. Trends in σ-hole strengths and interactions of F3MX molecules (M═C, Si, Ge and X═F, Cl, Br, I). J Mol Model. 2013;19:2739–2746. doi: 10.1007/s00894-012-1571-4
  • Politzer P, Murray JS, Clark T. Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys. 2013;15:11178–11189. doi: 10.1039/c3cp00054k
  • Murray JS, Lane P, Clark T, et al. σ-Hole bonding: molecules containing group VI atoms. J Mol Model. 2007;13:1033–1038. doi: 10.1007/s00894-007-0225-4
  • Murray JS, Lane P, Politzer P. Expansion of the σ-hole concept. J Mol Model. 2009;15:723–729. doi: 10.1007/s00894-008-0386-9
  • Esrafili MD, Mohammadian-Sabet F. Bifurcated chalcogen bonds: a theoretical study on the structure, strength and bonding properties. Chem Phys Lett. 2015;634:210–215. doi: 10.1016/j.cplett.2015.06.034
  • Esrafili MD, Mohammadian-Sabet F. Does single-electron chalcogen bond exist? Some theoretical insights. J Mol Model. 2015;21:65. doi: 10.1007/s00894-015-2613-5
  • Esrafili MD, Mohammadian-Sabet F, Baneshi MM. An ab initio investigation of chalcogen–hydride interactions involving HXeH as a chalcogen bond acceptor. Struct Chem. 2016;27:785–792. doi: 10.1007/s11224-015-0626-4
  • Brezgunova ME, Lieffrig J, Aubert E, et al. Chalcogen bonding: experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic–nucleophilic interactions. Cryst Growth Des. 2013;13:3283–3289. doi: 10.1021/cg400683u
  • Fick RJ, Kroner GM, Nepal B, et al. Sulfur-oxygen chalcogen bonding mediates AdoMet recognition in the lysine methyltransferase SET7/9. ACS Chem Biol. 2016;11:748–754. doi: 10.1021/acschembio.5b00852
  • Louvain N, Frison G, Dittmer J, et al. Noncovalent chalcogen bonds and disulfide conformational change in the cystamine-based hybrid perovskite [H3N(CH2)2SS(CH2)·2NH3] PbIII4. Eur J Inorg Chem. 2014;2014:364–376. doi: 10.1002/ejic.201301017
  • Fanfrlík J, Přáda A, Padělková Z, et al. The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics. Angew Chem Int Ed. 2014;53:10139–10142. doi: 10.1002/anie.201405901
  • Wang W, Ji B, Zhang Y. Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A. 2009;113:8132–8135. doi: 10.1021/jp904128b
  • Iwaoka M, Takemoto S, Tomoda S. Statistical and theoretical investigations on the directionality of nonbonded S···O interactions. Implications for molecular design and protein engineering. J Am Chem Soc. 2002;124:10613–10620. doi: 10.1021/ja026472q
  • Adhikari U, Scheiner S. Substituent effects on Cl⋯N, S⋯N, and P⋯N noncovalent bonds. J Phys Chem A. 2012;116:3487–3497. doi: 10.1021/jp301288e
  • Adhikari U, Scheiner S. Sensitivity of pnicogen, chalcogen, halogen and H-bonds to angular distortions. Chem Phys Lett. 2012;532:31–35. doi: 10.1016/j.cplett.2012.02.064
  • Scheiner S. Detailed comparison of the pnicogen bond with chalcogen, halogen, and hydrogen bonds. Int J Quantum Chem. 2013;113:1609–1620. doi: 10.1002/qua.24357
  • Scheiner S. Sensitivity of noncovalent bonds to intermolecular separation: hydrogen, halogen, chalcogen, and pnicogen bonds. CrystEngComm. 2013;15:3119–3124. doi: 10.1039/C2CE26393A
  • Azofra LM, Alkorta I, Scheiner S. Strongly bound noncovalent (SO3)n:H2CO complexes (n= 1, 2). Phys Chem Chem Phys. 2014;16:18974–18981. doi: 10.1039/C4CP02380C
  • Li Q-Z, Qi H, Li R, et al. Prediction and characterization of a chalcogen–hydride interaction with metal hybrids as an electron donor in F2CS─HM and F2CSe─HM (M═Li, Na, BeH, MgH, MgCH3) complexes. Phys Chem Chem Phys. 2012;14:3025–3030. doi: 10.1039/c2cp23664h
  • Esrafili MD, Mohammadian-Sabet F, Baneshi MM. The dual role of halogen, chalcogen, and pnictogen atoms as Lewis acid and base: triangular XBr:SHX:PH2X complexes (X═F, Cl, Br, CN, NC, OH, NH2, and OCH3). Int J Quantum Chem. 2015;115:1580–1586. doi: 10.1002/qua.24987
  • Adhikari U, Scheiner S. Effects of charge and substituent on the S⋯N chalcogen bond. J Phys Chem A. 2014;118:3183–3192. doi: 10.1021/jp501449v
  • Esrafili MD, Mohammadian-Sabet F. An ab initio study on cationic chalcogen bond interactions between F3−nHnS+ (n═0–2) and nitrogen bases. Chem Phys Lett. 2016;645:32–37. doi: 10.1016/j.cplett.2015.12.027
  • Mano JF. Cooperativity in the crystalline α-relaxation of polyethylene. Macromolecules. 2001;34:8825–8828. doi: 10.1021/ma010855b
  • Wieczorek R, Dannenberg J. H-bonding cooperativity and energetics of α-helix formation of five 17-amino acid peptides. J Am Chem Soc. 2003;125:8124–8129. doi: 10.1021/ja035302q
  • Li Q, Lin Q, Li W, et al. Cooperativity between the halogen bond and the hydrogen bond in h3n⋯xy⋯hf complexes (x, y═f, cl, br). Chem Phys Chem. 2008;9:2265–2269.
  • Arduengo Iii AJ, Davidson F, Krafczyk R, et al. Carbene complexes of pnictogen pentafluorides and boron trifluoride. Monatsh Chem. 2000;131:251–265. doi: 10.1007/s007060070101
  • Couture J-F, Dirk LM, Brunzelle JS, et al. Structural origins for the product specificity of SET domain protein methyltransferases. Proc Nat Acad Sci. 2008;105:20659–20664. doi: 10.1073/pnas.0806712105
  • Horowitz S, Yesselman JD, Al-Hashimi HM, et al. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. J Biol Chem. 2011;286:18658–18663. doi: 10.1074/jbc.M111.232876
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09. Wallingford (CT): Gaussian, Inc; 2009.
  • Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19:553–566. doi: 10.1080/00268977000101561
  • Bulat F, Toro-Labbé A, Brinck T, et al. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model. 2010;16:1679–1691. doi: 10.1007/s00894-010-0692-x
  • Bader RFW. Atoms in molecules: a quantum theory. New York: Oxford University Press; 1990.
  • Silvi B, Savin A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature. 1994;371:683–686. doi: 10.1038/371683a0
  • Biegler-Konig F, Schönbohm J, Bayles D. AIM2000. J Comput Chem. 2001;22:545–559. doi: 10.1002/1096-987X(20010415)22:5<545::AID-JCC1027>3.0.CO;2-Y
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi: 10.1002/jcc.22885
  • Johnson ER, Keinan S, Mori-Sanchez P, et al. Revealing noncovalent interactions. J Am Chem Soc. 2010;132:6498–6506. doi: 10.1021/ja100936w
  • Alkorta I, Elguero J, Solimannejad M. Single electron pnicogen bonded complexes. J Phys Chem A. 2014;118:947–953. doi: 10.1021/jp412144r
  • Del Bene JE, Alkorta I, Elguero J. Pnicogen-bonded anionic complexes. J Phys Chem A. 2014;118:3386–3392. doi: 10.1021/jp502667k
  • Del Bene JE, Alkorta I, Elguero J. Properties of cationic pnicogen-bonded complexes F4−nHnP+: N-base with F─P⋯N linear and n═0–3. J Phys Chem A. 2015;119:5853–5864. doi: 10.1021/acs.jpca.5b03035
  • Bondi A. Van der Waals volumes and radii. J Phys Chem. 1964;68:441–451. doi: 10.1021/j100785a001
  • Riley KE, Hobza P. Investigations into the nature of halogen bonding including symmetry adapted perturbation theory analyses. J Chem Theory Comput. 2008;4:232–242. doi: 10.1021/ct700216w
  • Li Q, Zhu H, Zhuo H, et al. Complexes between hypohalous acids and phosphine derivatives. Pnicogen bond versus halogen bond versus hydrogen bond. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2014;132:271–277. doi: 10.1016/j.saa.2014.05.001
  • Esrafili MD, Asadollahi S, Vakili M. Investigation of substituent effects in aerogen-bonding interaction between ZO3 (Z═Kr, Xe) and nitrogen bases. Int J Quantum Chem. 2016;116:1254–1260. doi: 10.1002/qua.25168
  • Koch U, Popelier P. Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem. 1995;99:9747–9754. doi: 10.1021/j100024a016
  • Alkorta I, Elguero J, Grabowski SJ. Pnicogen and hydrogen bonds: complexes between PH3X(+) and PH2X systems. Phys Chem Chem Phys. 2015;17:3261–3272. doi: 10.1039/C4CP04840G
  • Bene JED, Alkorta I, Elguero J. P···N pnicogen bonds in cationic complexes of F4P+ and F3HP+ with nitrogen bases. J Phys Chem A. 2015;119:3125–3133. doi: 10.1021/acs.jpca.5b00944
  • Esrafili MD, Mohammadian-Sabet F. Ab initio calculations of cooperativity effects on chalcogen bonding: linear clusters of (OCS)2–8 and (OCSe)2–8. Struct Chem. 2014;26:199–206. doi: 10.1007/s11224-014-0477-4
  • Li Q-Z, Li R, Guo P, et al. Competition of chalcogen bond, halogen bond, and hydrogen bond in SCS-HOX and SeCSe-HOX (X═Cl and Br) complexes. Comput Theor Chem. 2012;980:56–61. doi: 10.1016/j.comptc.2011.11.019
  • Zhao Q. Interplay between halogen and chalcogen bonding in the XCl⋯OCS⋯NH3 (X═F, OH, NC, CN, and FCC) complex. J Mol Model. 2014;20:2458. doi: 10.1007/s00894-014-2458-3
  • Esrafili MD, Vakili M. Cooperativity effects between σ-hole interactions: a theoretical evidence for mutual influence between chalcogen bond and halogen bond interactions in F2S⋯NCX⋯NCY complexes (X═F, Cl, Br, I; Y═H, F, OH). Mol Phys. 2014;112:2746–2752. doi: 10.1080/00268976.2014.909057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.