202
Views
6
CrossRef citations to date
0
Altmetric
Articles

The S···P noncovalent interaction: diverse chalcogen bonds

, , &
Pages 249-263 | Received 20 Oct 2016, Accepted 19 Dec 2016, Published online: 18 Jan 2017

References

  • Hobza P, Zahradnik R. Weak intermolecular interactions in chemistry and biology. Amsterdam: Elsevier Scientific; 1980.
  • Stone AJ. The theory of intermolecular forces. Oxford: Oxford University Press; 2002.
  • Schneider HJ. Binding mechanisms in supramolecular complexes. Angew Chem Int Ed. 2009;48:3924–3977. doi: 10.1002/anie.200802947
  • Hobza P, Müller-Dethlefs K. Non-covalent interactions: theory and experiment. Cambridge: Royal Society of Chemistry; 2010.
  • Lehmann SBC, Spickermann C, Kirchner B. Quantum cluster equilibrium theory applied in hydrogen bond number studies of water. 1. Assessment of the quantum cluster equilibrium model for liquid water. J Chem Theory Comput. 2009;5:1640–1649. doi: 10.1021/ct800310a
  • Aakeroy CB, Fasulo M, Schulthesis N, et al. Structural competition between hydrogen bonds and halogen bonds. J Am Chem Soc. 2007;129:13772–13773. doi: 10.1021/ja073201c
  • Auffinger P, Hays FA, Westhof E, et al. Halogen bonds in biological molecules. Proc Natl Acad Sci USA. 2004;101:16789–16794. doi: 10.1073/pnas.0407607101
  • Khullar S, Mandal SK. Supramolecular assemblies of dimanganese subunits and water clusters organized by strong hydrogen bonding interactions: single crystal to single crystal transformation by thermal de-/rehydration processes. Cryst Growth Des. 2012;12:5329–5337. doi: 10.1021/cg300937f
  • Toth G, Bowers SG, Truong AP, et al. The role and significance of unconventional hydrogen bonds in small molecule recognition by biological receptors of pharmaceutical relevance. Curr Pharm Des. 2007;13:3476–3493. doi: 10.2174/138161207782794284
  • Cooper VR, Thonhauser T, Puzder A, et al. Stacking interactions and the twist of DNA. J Am Chem Soc. 2008;130:1304–1308. doi: 10.1021/ja0761941
  • Leavens FMV, Churchill CDM, Wang S, et al. Evaluating how discrete water molecules affect protein-DNA π-π and π+-π stacking and T-shaped interactions: the case of histidine-adenine dimers. J Phys Chem B. 2011;115:10990–11003. doi: 10.1021/jp205424z
  • Lipkowski P, Grabowski SJ, Leszczynski J. Properties of the halogen-hydride interactions: an ab initio and “atoms in molecules” analysis. J Phys Chem A. 2006;110:10296–10302. doi: 10.1021/jp062289y
  • Alikhani E, Fuster F, Madebene B, et al. Topological reaction sites – very strong chalcogen bonds. Phys Chem Chem Phys. 2014;16:2430–2442. doi: 10.1039/C3CP54208D
  • Wang W, Ji B, Zhang Y. Chalcogen bond: a sister noncovalent bond to halogen bond. J Phys Chem A. 2009;113:8132–8135. doi: 10.1021/jp904128b
  • Minyaev RM, Minkin VI. Theoretical study of O → X (S, Se, Te) coordination in organic compounds. Can J Chem. 1998;76(6):776–788. doi: 10.1139/v98-080
  • Scheiner S. Can two trivalent N atoms engage in a direct N···N noncovalent interaction? Chem Phys Lett. 2011;514:32–35. doi: 10.1016/j.cplett.2011.08.028
  • Zahn S, Frank R, Hey-Hawkins E, Kirchner B. Pnicogen bonds: a new molecular linker? Chem Eur J. 2011;17:6034–6038. doi: 10.1002/chem.201002146
  • Del Bene JE, Alkorta I, Elguero J. Noncovalent forces: the pnicogen bond in review: structures, binding energies, bonding properties, and spin-spin coupling constants of complexes stabilized by pnicogen bonds, volume 19 of the series challenges and advances in computational chemistry and physics. Switzerland: Springer; 2015.
  • Alkorta I, Rozas I, Elguero J. Molecular complexes between silicon derivatives and electron-rich groups. J Phys Chem A. 2001;105:743–749. doi: 10.1021/jp002808b
  • Bauzá A, Mooibroek TJ, Frontera A. Tetrel-bonding interaction: rediscovered supramolecular force? Angew Chem Int Ed. 2013;52:12317–12321. doi: 10.1002/anie.201306501
  • Grabowski SJ. Tetrel bond-σ-hole bond as a preliminary stage of the SN2 reaction. Phys Chem Chem Phys. 2014;16:1824–1834. doi: 10.1039/C3CP53369G
  • Politzer P, Murray JS, Janjic GV, et al. σ-hole interactions of covalently-bonded nitrogen, phosphorus and arsenic: a survey of crystal structures. Crystals. 2014;4:12–31. doi: 10.3390/cryst4010012
  • Murray JS, Lane P, Clark T, Politzer P. σ-hole bonding: molecules containing group VI atom. J Mol Model. 2007;13:1033–1038. doi: 10.1007/s00894-007-0225-4
  • Cozzolino AF, Vargas-Baca I, Mansour S, et al. The nature of the supramolecular association of 1,2,5-chalcogenadiazoles. J Am Chem Soc. 2005;127:3184-3190. doi: 10.1021/ja044005y
  • Devillanova F. Handbook of chalcogen chemistry: new perspective in sulfur, selenium and tellurium. Cambridge: Royal Society Chemistry; 2007.
  • Bleiholder C, Werz DB, Koppel H, et al. Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? J Am Chem Soc. 2006;128:2666–2674. doi: 10.1021/ja056827g
  • Sanchez-Sanz G, Alkorta I, Elguero J. Theoretical study of the HXYH dimers (X, Y=O, S, Se): hydrogen bonding and chalcogen-chalcogen interactions. Mol Phys. 2011;109:2543–2552. doi: 10.1080/00268976.2011.621458
  • Nejati K, Vessally E, Afi A. The intermolecular interaction studies in the complexes of isothiocyanic acid (HNCS) and its derivatives with H2S: a computational study. J Sulfur Chem. 2015;36:207–215. doi: 10.1080/17415993.2015.1005621
  • Vessally E, Mortezapour A, Goodarzi M. On the intermolecular interactions of isothiocyanic acid (HNCS) with disulfur monoxide (SSO): a first principles approach. J Sulfur Chem. 2014;35:484–492. doi: 10.1080/17415993.2014.917376
  • Shukla R, Chopra D. Exploring the role of substitution on the formation of Se···O/N noncovalent bonds. J Phys Chem B. 2015;119:14857–14870. doi: 10.1021/acs.jpcb.5b08684
  • Shukla R, Chopra D. “Pnicogen bonds” or “chalcogen bonds”: exploiting the effect of substitution on the formation of P···Se noncovalent bonds. Phys Chem Chem Phys. 2016;18:13820–13829. doi: 10.1039/C6CP01703G
  • Shukla R, Chopra D. Characterization of N···O non-covalent interactions involving σ-holes: “electrostatics” or “dispersion”. Phys Chem Chem Phys. 2016;18:29946–29954. doi: 10.1039/C6CP05899J
  • Scheiner S, Adhikari U. The S···N noncovalent interaction: comparison with hydrogen and halogen bonds. Chem Phys Lett. 2011;514:36–39. doi: 10.1016/j.cplett.2011.08.028
  • Scheiner S, Adhikari U. Substituent effects on Cl···N, S···N, and P···N noncovalent bonds. Phys Chem A. 2012;116:3487–3497. doi: 10.1021/jp301288e
  • Scheiner S, Adhikari U. Effects of charge and substituent on the S···N chalcogen bond. J Phys Chem A. 2014;118:3183–3192.
  • Esrafili MD, Mohammadirad N. An ab initio study on tunability of σ-hole interactions in XHS:PH2Y and XH2P:SHY complexes (X=F, Cl, Br; Y=H, OH, OCH3, CH3, C2H5, and NH2). J Mol Model. 2015;21:176. doi: 10.1007/s00894-015-2727-9
  • Zabardasti A, Kakanejadifard A, Ghasemian M, et al. Theoretical study of molecular interactions of sulfur ylide with HSX (X=F, Cl, and Br) molecules. Struct Chem. 2013;24:1604–1612.
  • Zabardasti A, Afrouzi H, Kakanejadifard A. Theoretical study of H···P and X···P interactions of methylphosphines with HSX molecules. Struct Chem. 2014;25:1819–1829. doi: 10.1007/s11224-014-0460-0
  • Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 03, revision B 02. Pittsburgh (PA): Gaussian Inc.; 2003.
  • Møller C, Plesset MS. Note on an approximation treatment for many-electron systems. Phys Rev. 1934;46:618–622. doi: 10.1103/PhysRev.46.618
  • Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7:3297–3305. doi: 10.1039/b508541a
  • Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors. Mol Phys. 1970;19:553–566. doi: 10.1080/00268977000101561
  • Bader RFW. In: Halpen J, Green MLH, editors. Atoms in molecules: a quantum theory. The international series of monographs of chemistry. Oxford: Clarendon Press; 1990.
  • Biegler-Konig F, Schonbohm J. AIM2000 program package. Version 2.0. Bielefeld: University of Applied Sciences; 2002.
  • Reed AE, Curtiss LA, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev. 1988;88:899–926. doi: 10.1021/cr00088a005
  • Savin A, Silvi B, Coionna F. Topological analysis of the electron localization function applied to delocalized bonds. Can J Chem. 1996;74:1088–1096. doi: 10.1139/v96-122
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi: 10.1002/jcc.22885
  • Bickelhaupt FM, Baerends EJ. Kohn-Sham density function theory: predicting and understanding chemistry. Rev Comput Chem. 2000;15:1–86. doi: 10.1002/9780470125922.ch1
  • te Velde G, Bickelhaupt FM, Baerends EJ, et al. Chemistry with ADF. J Comput Chem. 2001;22:931–967. doi: 10.1002/jcc.1056
  • ADF2010. 01. Theoretical chemistry. Vrije Universiteit, SCM, Amsterdam (the Netherlands). Available from: http://www.scm.com.
  • Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slater Method. Theor Chim Acta. 1977;46:1–10. doi: 10.1007/BF02401406
  • Morokuma KJ. Molecular orbital studies of hydrogen bonds. III. C=O···H–O hydrogen bond in H2CO···H2O and H2CO···2H2O. J Chem Phys. 1971;55:1236–1244. doi: 10.1063/1.1676210
  • Bondi A. Van der Waals volumes and radii. J Phys Chem. 1964;68:441–451. doi: 10.1021/j100785a001
  • Cordero B, Gomez V, Platero-Parts AE, et al. Covalent radii revisited. Dalton Trans. 2008;2832-2838. doi: 10.1039/b801115j
  • Love I. Polar covalent bonds: an AIM analysis of S,O bonds. J Phys Chem A. 2009;113:2640–2646. doi: 10.1021/jp8106183
  • Nakanishi W, Hayashi S, Narahara K. Polar coordinate representation of Hb(rc) versus (ħ2/8m)∇2ρb(rc) at BCP in AIM analysis: classification and evaluation of weak to strong interactions. J Phys Chem A. 2009;113:10050–10057. doi: 10.1021/jp903622a
  • Cremer D, Kraka E. Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl. 1984;23:627–628. doi: 10.1002/anie.198406271
  • Espinosa E, Alkorta I, Elguero J, et al. From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H···F–Y systems. J Chem Phys. 2002;117:5529–5542. doi: 10.1063/1.1501133
  • Brezgunova M. Charge density analysis and topological properties of weak intermolecular interactions–halogen and chalcogen bonding–and their comparison with hydrogen bonding. Nancy: University of Lorraine; 2013.
  • Alkorta I, Elguero J, Solimannejad M. Single electron pnicogen bonded complexes. J Phys Chem A. 2014;118:947–953. doi: 10.1021/jp412144r
  • Becke A, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys. 1990;92:5397–5403. doi: 10.1063/1.458517
  • Alikhani ME, Fuster F, Silvi B. What can tell the topological analysis of ELF on hydrogen bonding? Struct Chem. 2005;16:203–210. doi: 10.1007/s11224-005-4451-z
  • Fuster F, Grabowski SJ. Intramolecular hydrogen bonds: the QTAIM and ELF characteristics. J Phys Chem A. 2011;115:10078–10086. doi: 10.1021/jp2056859

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.