372
Views
9
CrossRef citations to date
0
Altmetric
Articles

An efficient method for synthesis of some heterocyclic compounds containing 3-iminoisatin and 1,2,4-triazole using Fe3O4 magnetic nanoparticles

, , , , , & show all
Pages 279-290 | Received 12 Jun 2015, Accepted 28 Dec 2016, Published online: 25 Jan 2017

References

  • Hu A, Yee GT, Lin W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J Am Chem Soc. 2005;127:12486–12487. doi: 10.1021/ja053881o
  • Senapati KK, Borgohain C, Phukan P. Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for knoevenagel reaction in aqueous medium. J Mol Catal A Chem. 2011;339:24–31. doi: 10.1016/j.molcata.2011.02.007
  • Lim CW, Lee IS. Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today. 2010;5:412–434. doi: 10.1016/j.nantod.2010.08.008
  • Perez JM. Iron oxide nanoparticles. Nat Nanotechnol. 2007;2:535–536. doi: 10.1038/nnano.2007.282
  • Scheuermann GM, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction. J Am Chem Soc. 2009;131:8262–8270. doi: 10.1021/ja901105a
  • Shao HP, Lin T, Luo J, et al. Effect of surfactants on modifying the surface of magnetic nanoparticles by thermal decomposition. Adv Mater Res. 2011;335–336:951–955.
  • Benelmekki M, Xuriguera E, Caparros C, et al. Design and characterization of Ni2+ and Co2+ decorated porous magnetic silica spheres synthesized. J Colloid Interf Sci. 2012;365:156–162. doi: 10.1016/j.jcis.2011.09.051
  • Naeimi H, Nazifi ZS. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. J Nanopart Res. 2013;15:2026–2037. doi: 10.1007/s11051-013-2026-2
  • Safari J, Zarnegar Z. Magnetic Fe3O4 nanoparticles as a highly efficient catalyst for the synthesis of imidazoles under ultrasound irradiation. Iranian J Catal. 2012;2:121–128.
  • Morel AL, Nikitenko SI, Gionnet K, et al. Sonochemical approach to the synthesis of Fe3O4@SiO2 core shell nanoparticles with tunable properties. J Am Chem Soc. 2008;2:847–856.
  • Sun S, Lou H, Gao Y, et al. Liquid chromatography-tandem mass spectrometric method for the analysis of fluconazole and evaluation of the impact of phenolic compounds on the concentration of fluconazole in candida Albicans. J Pharm Biomed Anal. 2004;34:1117–1124. doi: 10.1016/j.jpba.2003.11.013
  • Lye H. Modern selective fungicides. Harlow: Longman Scientific Technical; 1987. p. 13–30.
  • Hester SD, Wolf DC, Nesnow S, et al. Transcriptional profiles in liver from rats treated tumorigenic and non-tumorigenic triazole conazole fungicides: propiconazole triadimefon, and myclobutanil. Toxicol Pathol. 2006;34:879–894. doi: 10.1080/01926230601047824
  • Clemons M, Coleman RE, Verma S. Aromatase inhibitors in the adjuvant setting: bringing the gold to a standard? Cancer Treat Rev. 2004;30:325–332. doi: 10.1016/j.ctrv.2004.03.004
  • Johnston GA. Medicinal chemistry and molecular pharmacology of GABA(C) receptors. Curr Top Med Chem. 2002;2:903–913. doi: 10.2174/1568026023393453
  • Coffen DL, Fryer RI. Process for preparing triazolobenzodiazepines. 1973. United States patent 1974, 3,849,434.
  • Ahin DS, Bayra KH, Irbas AD, et al. Design and synthesis of new 1,2,4-triazole derivatives containing morpholine moiety as antimicrobial agants. Turk J Chem. 2012;36:411–426.
  • Roubeau O. Triazole-based one-dimensional spin-crossover coordination polymers. Chem. 2012;18;15230–15244. doi: 10.1002/chem.201201647
  • Castanedo GM, Seng PS, Blaquiere N, et al. Rapid synthesis of 1,3,5-substituted 1,2,4-triazoles from carboxylic acids, amidines, and hydrazines. J Org Chem. 2011;76:1177–1179. doi: 10.1021/jo1023393
  • Ueda S, Nagasawa H. Facile synthesis of 1,2,4-triazoles via a copper-catalyzed tandem addition-oxidative cyclization. J Am Chem Soc. 2009;131:15080–15081. doi: 10.1021/ja905056z
  • Naito Y, Akahoshi F, Takeda S, et al. Synthesis and pharmacological activity of triazole derivatives inhibiting eosinophilia. J Med Chem. 1996;39:3019–3029. doi: 10.1021/jm9507993
  • Chollet JF, Bonnemain JL, Miginiac L, et al. Fungicidal activity of a series of 1- substituted-1-aryl-2-triazol-1-yl-ethanols. J Pestic Sci. 1990;29:427–435. doi: 10.1002/ps.2780290407
  • Plach T, Kapron B, Luszczki JJ, et al. Studies on the anticonvulsant activity of 4-alkyl-1,2,4-triazole-3-thiones and their effect on GABAergic system. Eur J Med Chem. 2014;86:690–699. doi: 10.1016/j.ejmech.2014.09.034
  • Holla BS, Veerendra B, Shivananda MK, et al. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur J Med Chem. 2003;38:759–767. doi: 10.1016/S0223-5234(03)00128-4
  • Turan-Zitouni G, Sivaci MF, Kiliç S, et al. Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity. Eur J Med Chem. 2001;36:685–689. doi: 10.1016/S0223-5234(01)01252-1
  • Li X, Li XQ, Liu HM, et al. Synthesis and evaluation of antitumor activities of novel chiral 1,2,4-triazole Schiff bases bearing ɣ-butenolide moiety. Org Med Chem Lett. 2012;2:26–30. doi: 10.1186/2191-2858-2-26
  • Bhat AR, Bhat GV, Shenoy GG. Synthesis and in-vitro antimicrobial activity of new 1,2,4-triazoles. J Pharm Pharmacol. 2001;53:267–272. doi: 10.1211/0022357011775307
  • Jiang B, Huang X, Yao H, et al. Discovery of potential anti-inflammatory drugs: diaryl-1,2,4-triazoles bearing N-hydroxyurea moiety as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. Org Biomol Chem. 2014;12:2114–2127. doi: 10.1039/c3ob41936c
  • Palaska E, Sahin G, Kelicen P, et al. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Il Farmaco. 2002;57:101–107. doi: 10.1016/S0014-827X(01)01176-4
  • Abele E, Abele R, Dzenitis O, et al. Indole and isatin oximes: synthesis, reaction and biological activity. Chem Heterocycl Compd. 2003;39:3–35. doi: 10.1023/A:1023008422464
  • Da Silva JFM, Garden SJ, Pinto AC. The chemistry of isatines: a review from 1975–1999. J Braz Chem Soc. 2001;12:273–324. doi: 10.1590/S0103-50532001000300002
  • Lashgari N, Mohammadi Ziarani G. Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. ARKIVOC. 2012;I:277–320.
  • Jarrahpour A, Khalili D, De Clercq E, et al. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules. 2007;12:1720–1730. doi: 10.3390/12081720
  • Bhrigu B, Pathak D, Siddiqui N, et al. Search for biological active isatins: a short review. Int J Pharm Sci Drug Res. 2010;2:229–235.
  • Somogyi L. Transformation of isatin 3-acylhydrazones under acetylating conditions: synthesis and structures elucidation 1,5′-disubstituted 3′-acetylspiro[oxindol-3,2′-[1,3,4]oxadiazolines]. Bull Chem Soc JPN. 2001;74:873–881. doi: 10.1246/bcsj.74.873
  • Vine KL, Matesic L, Locke JM, et al. Cytotoxic and anticancer activities of isatin and its derivatives: a comprehensive review from 2000–2008. Anti-Cancer Med Chem. 2009;9:397–414. doi: 10.2174/1871520610909040397
  • Yang D, Hu J, Fu S. Controlled synthesis of magnetite-silica nanocomposites via a seeded sol-gel approach. J Phys Chem C. 2009;113:7646–7651. doi: 10.1021/jp900868d
  • Kiasat AR, Davarpanah J. Fe3O4@silica sulfuric acid nanoparticles: an efficient reusable nanomagnetic catalyst as potent solid acid for one-pot solvent-free synthesis of indazolo[2,1-b]phthalazine-triones and pyrazolo[1,2-b]phthalazine-diones. J Mol Cat A Chem. 2013;373:46–54. doi: 10.1016/j.molcata.2013.03.003
  • Bragg WL. The structure of magnetite and the spinels. Nature. 1915;95:561–561. doi: 10.1038/095561a0
  • Ayala-Valenzuela O, Matutes-Aquino J, Betancourt-Galindo R, et al. Magnetite-cobalt ferrite nanoparticles for kerosene-based magnetic fluids. J Magnet Magnet Mater. 2005;294:e37–e41. doi: 10.1016/j.jmmm.2005.03.050
  • Vaidyanathan G, Sendhilnathan S, Arulmurugan R. Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles by Co-precipitation method. J Magnet Magnet Mater. 2007;313:293–299. doi: 10.1016/j.jmmm.2007.01.010
  • Warren BE. X-ray diffraction. New York: Dover; 1990.
  • Hong RY, Pan TT, Li HZ. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J Magn Magn Mater. 2006;303:60–68. doi: 10.1016/j.jmmm.2005.10.230
  • Kulkarni AD, Patil SA, Badami PS. SNO donor Schiff bases and their Co(II), Ni(II) and Cu(II) complexes: synthesis, characterization, electrochemical and antimicrobial studies. J Sulfur Chem. 2009;30:145–159. doi: 10.1080/17415990802663133
  • Al-Nuzal SMD, Al-Kahachi MMM. Preparation and biological study of 1,2,4-isoproplydine malonate bistriazoles and bisisatin transition metal complexes. J Appl Chem. 2014;3:2343–2357.
  • Abo-Bakr A. Synthesis and evaluation of antimicrobial activity of some new heterocyclic compounds using succinic acid dihydrazide as a precursor. Int J Scient and Eng Res. 2013;4:1438–1445.
  • Zhou J, Wu D, Guo D. Optimization of the production of thiocarbohydrazide using the Taguchi method. J Chem Technol Biotechnol. 2010;85:1402–1406. doi: 10.1002/jctb.2446
  • Gupta AK, Prachand S, Patel A, et al. Synthesis of some 4-amino-5-(substituted-phenyl)-4H-[1,2,4]triazole-3-thiol derivatives and antifungal activity. Int J Pharm Life Sci. 2012;3:1848–1857.
  • Dandia A, Gupta SL, Sudheer, Quraishi MA. Microwave assisted economic synthesis of 4-amino-3-alkyl-5-mercapto-1,2,4-triazole derivatives as Green corrosion inhibitors for copper in hydrochloric acid. J Mater Environ Sci. 2012;3:993–1000.
  • Smicius R, Burbuliene MM, Jakubkiene V, et al. Convenient way to 5-substituted 4-amino-2,3-dihydro-4H-1,2,4-triazole-3-thiones. J Heterocyclic Chem. 2007;44:279–284. doi: 10.1002/jhet.5570440201
  • Bajroliya S, Kalwania GS, Choudhary S, et al. Synthesis, characterization and antimicrobial activities of 1,2,4-triazole/isatin Schiff bases and their Mn(II), Co(II) complexes. Oriental J Chem. 2014;30:1601–1608. doi: 10.13005/ojc/300419

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.