123
Views
12
CrossRef citations to date
0
Altmetric
Articles

A computational study of adsorption H2S gas on the surface of the pristine, Al&P-doped armchair and zigzag BNNTs

&
Pages 384-400 | Received 21 Oct 2016, Accepted 27 Mar 2017, Published online: 12 Apr 2017

References

  • Terrones M, Romo-Herrera JM, Cruz-Silva E, et al. Pure and doped boron nitride nanotubes. Mater Today. 2007;10(5):30–38. doi: 10.1016/S1369-7021(07)70077-9
  • Li Y, Zhou Z, Zhao J. Transformation from chemisorption to physisorption with tube diameter and gas concentration: computational studies on NH3 adsorption in BN nanotubes. J Chem Phys. 2007;127:184705–184706. doi: 10.1063/1.2786112
  • Gou GY, Pan BC, Shi L. Noncovalent functionalization of BN nanotubes with perylene derivative molecules: an ab initio study. ACS Nano. 2010;4:1313–1320. doi: 10.1021/nn900872t
  • He W, Li Z, Yang J, et al. A first principles study on organic molecule encapsulated boron nitride nanotubes. J Chem Phys. 2008;128:164701–164705. doi: 10.1063/1.2901026
  • Bayani AH. Influence of the hydrogen adsorption to the optical properties of boron nitride nanotubes. Acta Phys Polonica A. 2016;129:348–351. doi: 10.12693/APhysPolA.129.348
  • Ahmadi A, Beheshtian J, Hadipour NL. Chemisorption of NH3 at the open ends of boron nitride nanotubes: a DFT study. Struct Chem. 2011;22:183–188. doi: 10.1007/s11224-010-9697-4
  • Wu X, An W, Zeng XC. Chemical functionalization of boron–nitride nanotubes with NH3 and amino functional groups. J Am Chem Soc. 2006;128:12001–12006. doi: 10.1021/ja063653+
  • Zhang Z, Guo W. Tunable ferromagnetic spin ordering in boron nitride nanotubes with topological fluorine adsorption. J Am Chem Soc. 2009;131:6874–6879. doi: 10.1021/ja901586k
  • Li Y, Zhou Z, Zhao J. Functionalization of BN nanotubes with dichlorocarbenes. Nanotechnology. 2008;19:015202–015207. doi: 10.1088/0957-4484/19/01/015202
  • Esrafili MD, Behzadi H. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies. J Mol Model. 2013;19:2375–2382. doi: 10.1007/s00894-013-1787-y
  • Azimirad R, Bayani AH, Safa S. The effect of concentration of H2 physisorption on the current–voltage characteristic of armchair BN nanotubes in CNT–BNNT–CNT set. Praman J Phys. 2016;87:46–52. doi: 10.1007/s12043-016-1238-2
  • Bayani AH, Shahtahmassebi N, Vahedi Fakhrabad D. The study of the effect of increasing adsorbed hydrogen’s atomic percentage on electronic properties of boron-nitride nanotube. Phys E. 2013;53:168–172. doi: 10.1016/j.physe.2013.05.008
  • Wang R, Zhang D. Theoretical study of the adsorption of carbon monoxide on pristine and silicon-doped boron nitride nanotubes. Aust J Chem. 2008;61:941–945. doi: 10.1071/CH08226
  • Rimola A. Intrinsic ladders of affinity for amino-acid-analogues on boron nitride nanomaterials: a B3LYP-D2* periodic study. J Phys Chem C. 2015;119:17707–17717. doi: 10.1021/acs.jpcc.5b04601
  • Mukhopadhyay S, Gowtham S, Scheicher RH, et al. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnology. 2010;21:165703–165708. doi: 10.1088/0957-4484/21/16/165703
  • Moradi AV, Peyghan AA, Hashemian S, et al. Theoretical study of thiazole adsorption on the (6,0) zigzag single-walled boron nitride nanotube. Bull Korean Chem Soc. 2012;33:3285–3292. doi: 10.5012/bkcs.2012.33.10.3285
  • Yu J, Chen Y, Cheng BM. Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. Solid State Commun. 2009;149:763–766. doi: 10.1016/j.ssc.2009.03.001
  • Baierle RJ, Schmidt TM, Fazzio A. Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes. Solid State Commun. 2007;142:49–53. doi: 10.1016/j.ssc.2007.01.036
  • Mousavi H, Kurdestany JM, Bagheri M. Carbon dioxide detection by boron nitride nanotubes. Appl Phys A. 2012;108:283–289. doi: 10.1007/s00339-012-6933-3
  • Peyghan AA, Baei MT, Moghimi M, et al. Phenol adsorption study on pristine, Ga-, and In-doped (4,4) armchair single-walled boron nitride nanotubes. Comput Theor Chem. 2012;997:63–69. doi: 10.1016/j.comptc.2012.07.037
  • Beheshtian J, Behzadi H, Esrafili MD, et al. A computational study of water adsorption on boron nitride nanotube. Struct Chem. 2010;21:903–908. doi: 10.1007/s11224-010-9605-y
  • Singla P, Singhal S, Goel N. Theoretical study on adsorption and dissociation of NO2 molecules on BNNT surface. Appl Surf Sci. 2013;283:881–887. doi: 10.1016/j.apsusc.2013.07.038
  • Beheshtian J, Peyghan AA, Bagheri Z. Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sens Actuators B. 2012;171-172:846–852. doi: 10.1016/j.snb.2012.05.082
  • Wang R, Zhu R, Zhang D. Adsorption of formaldehyde molecule on the pristine and silicon-doped boron nitride nanotubes. Chem Phys Lett. 2008;467:131–135. doi: 10.1016/j.cplett.2008.11.002
  • Xie Y, Huo YP, Zhang JM. First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube. Appl Surf Sci. 2012;258:6391–6397. doi: 10.1016/j.apsusc.2012.03.048
  • Chen Y, Hu CL, Li JQ, et al. Theoretical study of O2 adsorption and reactivity on single-walled boron nitride nanotubes. Chem Phys Lett. 2007;449:149–154. doi: 10.1016/j.cplett.2007.09.021
  • Meng Y, Xiu P, Huang B, et al. A unique feature of chiral transition of a difluorobenzo[c]phenanthrene molecule confined in a boron-nitride nanotube based on molecular dynamics simulations. Chem Phys Lett. 2014;591:265–267. doi: 10.1016/j.cplett.2013.11.052
  • Beheshtian J, Soleymanabadi H, Peyghan AA, et al. A DFT study on the functionalization of a BN nanosheet with PCX, (PC = phenyl carbamate, X = OCH3, CH3, NH2, NO2 and CN). Appl Surf Sci. 2013;268:436–441. doi: 10.1016/j.apsusc.2012.12.119
  • Hendrickson RG, Chang A, Hamilton RJ. Co-worker fatalities from hydrogen sulfide. Am J Ind Med. 2004;45:346–350. doi: 10.1002/ajim.10355
  • Nikkanen HE, Burns MM. Severe hydrogen sulfide exposure in a working adolescent. Pediatrics. 2004;113:927–929. doi: 10.1542/peds.113.4.927
  • Lindenmann J, Matzi V, Neuboeck N, et al. Severe hydrogen sulphide poisoning treated with 4-dimethylaminophenol and hyperbaric oxygen. Diving Hyperb Med. 2010;40(4):213–217. PMID 23111938. Retrieved 2013-06-07.
  • Ramasamy S, Singh S, Taniere P, et al. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am J Physiol. 2006;291(2):G288–G296. doi: 10.1152/ajpgi.00324.2005.PMID 16500920. Retrieved 2007-10-20.
  • Faye O, Raj A, Mittal V, et al. H2S adsorption on graphene in the presence of sulfur: a density functional theory study. Comput Mater Sci. 2016;117:110–119. doi: 10.1016/j.commatsci.2016.01.034
  • Ganji MD, Danesh N. Adsorption of H2S molecules by cucurbit[7]uril: ab initio vdW-DF study. RSC Adv. 2013;3:22031–22038. doi: 10.1039/c3ra41946k
  • Oudar J. Sulfur adsorption and poisoning of metallic catalysts. Catal Rev. 1980;22:171–195. doi: 10.1080/03602458008066533
  • Cheekatamarla PK, Lane AM. Catalytic autothermal reforming of diesel fuel for hydrogen generation in fuel cells: I. Activity tests and sulfur poisoning. J Power Sources. 2005;152:256–263. doi: 10.1016/j.jpowsour.2005.03.209
  • Jiang D, Su L, Ma L, et al. Cu-Zn-Al mixed metal oxides derived from hydroxycarbonate precursor for H2S removal at low temperature. Appl Surf Sci. 2010;256: 3216–3223. doi: 10.1016/j.apsusc.2009.12.008
  • Speight JG. Fuel science and technology handbook. New York: Marcel Dekker; 1990.
  • Sun M, Nelson AE, Adjaye J. Adsorption and dissociation of H2 and H2S on MoS2 and NiMoS catalysts. Catal Today. 2005;105:36–43. doi: 10.1016/j.cattod.2005.04.002
  • Wilson JM. LEED and AES study of the interaction of H2S and Mo (100). Surf Sci. 1975;53:330–340. doi: 10.1016/0039-6028(75)90133-8
  • Tabor D, Wilson JM. Low energy electron diffraction study of O2 and H2S adsorption on Mo (100). J Cryst Growth. 1971;9:60–67. doi: 10.1016/0022-0248(71)90208-9
  • Luo H, Cai J, Tao X, et al. Adsorption and dissociation of H2S on Mo(100) surface by first-principles study. Appl Surf Sci. 2014;292:328–335. doi: 10.1016/j.apsusc.2013.11.140
  • Chen S, Sun S, Lian B, et al. The adsorption and dissociation of H2S on Cu(100) surface: a DTF study. Surf Sci. 2014;620:51–58. doi: 10.1016/j.susc.2013.10.014
  • Peng S-F, Ho J-J. Theoretical study of H2S dissociation and sulfur oxidation on a W(111) surface. J Phys Chem C. 2010;114:19489–19495. doi: 10.1021/jp1084058
  • Alfonso DR, Cugini AV, Sorescu DC. Adsorption and decomposition of H2S on Pd(111) surface: a first-principles study. Catal Today. 2005;99:315–322. doi: 10.1016/j.cattod.2004.10.006
  • Jiang DE, Carter EA. Adsorption, diffusion, and dissociation of H2S on Fe(100) from first principles. J Phys Chem B. 2004;108:19140–19145. doi: 10.1021/jp046475k
  • Hegde VI, Shirodkar SN, Tit N, et al. First principles analysis of graphene and its ability to maintain long-ranged interaction with H2S. Surf Sci. 2014;621:168–174. doi: 10.1016/j.susc.2013.11.015
  • Herron JA, Tonelli S, Mavrikakis M. Atomic and molecular adsorption on Pd(111). Surf Sci. 2012;606:1670–1679. doi: 10.1016/j.susc.2012.07.003
  • Jiang DE, Carter EA. First principles study of H2S adsorption and dissociation on Fe(110). Surf Sci. 2005;583:60–68. doi: 10.1016/j.susc.2005.03.023
  • Stirling A, Bernasconi M, Parrinello M. Ab initio simulation of H2S adsorption on the (100) surface of pyrite. J Chem Phys. 2003;119:4934–4939. doi: 10.1063/1.1595632
  • Spencer MJS, Todorova N, Yarovsky I. H2s dissociation on the Fe(100) surface: an ab initio molecular dynamics study. Surf Sci. 2008;602:1547–1553. doi: 10.1016/j.susc.2008.02.028
  • Spencer MJS, Yarovsky I. Ab initio molecular dynamics study of H2S dissociation on the Fe(110) surface. J Phys Chem C. 2007;111:16372–16378. doi: 10.1021/jp074430o
  • Abufager PN, Lustemberg PG, Crepos C, et al. DFT study of dissociative adsorption of hydrogen sulfide on Cu(111) and Au(111). Langmuir. 2008;24:14022–14026. doi: 10.1021/la802874j
  • Zhang R, Liu H, Li J, et al. A mechanistic study of H2S adsorption and dissociation on Cu2O(111) surfaces: thermochemistry, reaction barrier. Appl Surf Sci. 2012;258:9932–9943. doi: 10.1016/j.apsusc.2012.06.053
  • Tao WH, Tsai CH. H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sens Actuators B. 2002;81:237–247. doi: 10.1016/S0925-4005(01)00958-3
  • Xu J, Wang X, Shen J. Hydrothermal synthesis of In2O3 for detecting H2S in air. Sens Actuators B. 2006;115:642–646. doi: 10.1016/j.snb.2005.10.038
  • Wang C, Chu X, Wu M. Detection of H2S down to ppb levels at room temperature using sensors based on ZnO nanorods. Sens Actuators B. 2006;113:320–323. doi: 10.1016/j.snb.2005.03.011
  • Gnanasekar KI, Jayaraman V, Prabhu E, et al. Electrical and sensor properties of FeNbO4: a new sensor material. Sens Actuators B. 1999;55:170–174. doi: 10.1016/S0925-4005(99)00051-9
  • Liu YL, Wang H, Yang Y, et al. Hydrogen sulfide sensing properties of NiFe2O4 nanopowder doped with noble metals. Sens Actuators B. 2004;102:148–154. doi: 10.1016/j.snb.2004.04.014
  • Noor T, Gil MV, Chen D. Production of fuel-cell grade hydrogen by sorption enhanced water gas shift reaction using Pd/Ni-Co catalysts. Appl Catal B. 2014;150–151:585–595. doi: 10.1016/j.apcatb.2014.01.002
  • Zhang M, Ning T, Zhang S, et al. Response time and mechanism of Pd modified TiO2 gas sensor. Mater Sci Semicond Process. 2014;17:149–154. doi: 10.1016/j.mssp.2013.09.014
  • Ditchfield R, Hehre WJ, Pople JA. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys. 1971;54:724–728. doi: 10.1063/1.1674902
  • Schmidt MW, Baldridge KK, Boatz JA, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–1363. doi: 10.1002/jcc.540141112
  • Rezaei-Sameti M, Yaghoobi S. Theoretical study of adsorption of CO gas on pristine and AsGa-doped (4, 4) armchair models of BPNTs. Comput Condens Matter. 2015;3:21–29. doi: 10.1016/j.cocom.2015.01.001
  • Rezaei Sameti M. The effect of doping three Al and N atoms on the chemical shielding tensor parameters of the boron phosphide nanotubes: a DFT study. Phys B. 2012;407:22–26. doi: 10.1016/j.physb.2011.09.020
  • Rezaei-Sameti M, Samadi Jamil E. The adsorption of CO molecule on pristine, As, B, BAs doped (4,4) armchair AlNNTs: a computational study. J Nanostruct Chem. 2016;3:1–9.
  • O’Boyle NM, Tenderholt AL, Langner KM. Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. 2008;29:839–845. doi: 10.1002/jcc.20823
  • Stegmeier S, Fleischer M, Hauptmann P. Influence of the morphology of platinum combined with β-Ga2O3 on the VOC response of work function type sensors. Sens Actuators B. 2010;148:439–449. doi: 10.1016/j.snb.2010.05.030
  • Rimola A, Sodupe M. Physisorption vs. chemisorption of probe molecules on boron nitride nanomaterials: the effect of surface curvature. Phys Chem Chem Phys. 2013;15:13190–13198. doi: 10.1039/c3cp51728d
  • Peralta-Inga Z, Lane P, Murray JS, et al. Characterization of surface electrostatic potentials of some (5, 5) and (n, 1) carbon and boron/nitrogen model nanotubes. Nano Lett. 2003;3(1):21–28. doi: 10.1021/nl020222q
  • Bulat FA, Toro-Labbé A, Brinck T, et al. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J Mol Model. 2010;16(11):1679–1691. doi: 10.1007/s00894-010-0692-x
  • Bulat FA, Burgess JS, Matis BR, et al. Hydrogenation and fluorination of graphene models: analysis via the average local ionization energy. J Phys Chem A. 2012;116(33):8644–8652. doi: 10.1021/jp3053604
  • Singla P, Singhal S, Goel N. A new strategy to tune the BNNT band gap upon adsorption of nitrobenzene and its p-substituted derivatives. Struct Chem. 2015;26:239–246. doi: 10.1007/s11224-014-0470-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.