91
Views
2
CrossRef citations to date
0
Altmetric
Articles

A new route for the synthesis of functionalized benzothiadiazine 1,1-dioxide derivatives via intramolecular C–H activation reactions of N,N′,N′′-trisubstituted guanidines and benzenesulfonylchloride

, , , &
Pages 646-655 | Received 11 Apr 2018, Accepted 07 Jul 2018, Published online: 06 Aug 2018

References

  • Das D, Hong J, Chen S, et al. Recent advances in drug discovery of benzothiadiazine and related analogs as HCV NS5B polymerase inhibitors. Bioorg Med Chem. 2011;19:4690–4703. doi: 10.1016/j.bmc.2011.06.079
  • Weller HN, Miller AV, Moquin RV, et al. Benzothiadiazine dioxides: a new class of potent angiotensin-II (AT1) receptor antagonists. Bioorg Med Chem Lett. 1992;2:1115–1120. doi: 10.1016/S0960-894X(00)80630-7
  • Jimonet P, Audiau F, Aloup JC, et al. Synthesis and sar of 2h-1,2,4-benzothiadiazine-1,1-dioxide-3- carboxylic acid derivatives as novel potent glycine antagonists of the NMDA receptor-channel complex. Bioorg Med Chem Lett. 1994;4:2735–2740. doi: 10.1016/S0960-894X(01)80586-2
  • Tait A, Luppi A, Franchini S, et al. 1,2,4-Benzothiadiazine derivatives as α1 and 5-HT1Areceptor ligands. Bioorg. Med Chem Lett. 2005;15:1185–1188. doi: 10.1016/j.bmcl.2004.12.004
  • Constant-Urban C, Charif M, Goffin E, et al. Triphenylphosphonium salts of 1,2,4-benzothiadiazine 1,1-dioxides related to diazoxide targeting mitochondrial ATP-sensitive potassium channels. Bioorg Med Chem Lett. 2013;23:5878–5881. doi: 10.1016/j.bmcl.2013.08.091
  • Gobis K, Foks H, Sławinski J, et al. Synthesis and biological activity of novel 3-heteroaryl-2H-pyrido[4,3-e][1,2,4]thiadiazine and 3-heteroaryl-2H-benzo[e][1,2,4]thiadiazine 1,1-dioxides. Monatsh Chem. 2013;144:1197–1203. doi: 10.1007/s00706-013-0988-5
  • Kamal A, Shetti RVCRNC, Azeeza S, et al. Anti-tubercular agents. Part 5: synthesis and biological evaluation of benzothiadiazine 1,1-dioxide based congeners. Eur J Med Chem 2010;45:4545–4553. doi: 10.1016/j.ejmech.2010.07.015
  • Al-Rashida M, Raza R, Abbas G, et al. Identification of novel chromone based sulfonamides as highly potent and selective inhibitors of alkaline phosphatases. Eur J Med Chem. 2013;66:438–449. doi: 10.1016/j.ejmech.2013.06.015
  • Arranz ME, Diaz JA, Ingate ST, et al. Synthesis and anti-HIV activity of 1,1,3-trioxo-2H,4H-thieno[3,4-e][1,2,4]thiadiazines (TTDs): a new family of HIV-1 specific non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem. 1999;7:2811–2822. doi: 10.1016/S0968-0896(99)00221-7
  • Phillips D, Sonnenberg J, Arai AC, et al. 5′-Alkyl-benzothiadiazides: a new subgroup of AMPA receptor modulators with improved affinity. Bioorg Med Chem. 2002;10:1229–1248. doi: 10.1016/S0968-0896(01)00405-9
  • Rolfe A, Hanson PR. Microwave-assisted sequential one-pot protocol to benzothiadiazin-3-one-1,1-dioxides via a copper-catalyzed N-arylation strategy. Tetrahedron Lett. 2009;50:6935–6937. doi: 10.1016/j.tetlet.2009.09.090
  • Kim J, Lee SY, Lee J, et al. Synthetic utility of ammonium salts in a Cu-catalyzed three-component reaction as a facile coupling partner. J Org Chem. 2008;73:9454–9457. doi: 10.1021/jo802014g
  • Cherepakha A, Kovtunenko VO, Tolmachev A, et al. Facile synthesis of 4H-1,2,4-benzothiadiazine-1,1-dioxides. Synth Commun. 2011;41:1977–1989. doi: 10.1080/00397911.2010.494815
  • Zhao D, Zhou YR, Shen Q, et al. Iron-catalyzed oxidative synthesis of N-heterocycles from primary alcohols. RSC Adv. 2014;4:6486–6489. doi: 10.1039/c3ra46363j
  • Coghlan MJ, Carroll WA, Gopalakrishnan M. Recent developments in the biology and medicinal chemistry of potassium channel modulators: update from a decade of progress. J Med Chem. 2001;44:1627–1653. doi: 10.1021/jm000484+
  • de Tullio P, Boverie S, Becker B, et al. 3-Alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides as ATP-sensitive potassium channel openers: effect of 6,7-disubstitution on potency and tissue selectivity. J Med Chem. 2005;48:4990–5000. doi: 10.1021/jm0580050
  • Khazi A, Jung YS. Synthesis of chiral 2-(6,8-dichloro-4-methyl-1,1,3-trioxo-3,4-dihydro-1H-1λ6-benzo[1,2,4]thiadiazin-2-yl) carboxylic acids derived from enantiomeric amino acids. Lett Org Chem. 2007;4:423–428. doi: 10.2174/157017807781467641
  • Kumar CV, Gopidas KR, Bhattacharyya K, et al. Photoinduced ring enlargement reactions of 2H-1,2,4-benzothiadiazine 1,1-dioxides. steady-state and laser flash photolysis studies. J Org Chem. 1986;51:1967–1972. doi: 10.1021/jo00361a005
  • Yang D, An B, Wei W, et al. Copper-Catalyzed domino synthesis of nitrogen heterocycle-fused benzoimidazole and 1,2,4-benzothiadiazine 1,1-dioxide derivatives. ACS Comb Sci. 2015;17:113–119. doi: 10.1021/co500125n
  • Godula K, Sames D. C-H bond functionalization in complex organic synthesis. Science. 2006;312:67–72. doi: 10.1126/science.1114731
  • Kakiuchi F, Chatani N. Catalytic methods for C-H bond functionalization: application in organic synthesis. Adv Synth Catal. 2003;345:1077–1101. doi: 10.1002/adsc.200303094
  • Ritleng V, Sirlin C, Pfeffer M. Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev. 2002;102:1731–1770. doi: 10.1021/cr0104330
  • Yavari I, Nematpour M. Copper-catalyzed tandem synthesis of tetrasubstituted pyrimidines from alkynes, sulfonyl azides, trichloroacetonitrile, and tetramethylguanidine. Synlett. 2013;24:165–167. doi: 10.1055/s-0032-1317951
  • Yavari I, Nematpour M, Yavari S, et al. Copper-catalyzed one-pot synthesis of tetrasubstituted pyrazoles from sulfonyl azides, terminal alkynes, and hydrazonoyl chlorides. Tetrahedron Lett. 2012;53:1889–1890. doi: 10.1016/j.tetlet.2012.01.083
  • Nematpour M, Abedi E. A microwave-assisted new synthesis of sulfonylidene–sulfonamide via reactions of N-sulfonylketenimine and sodium arylsulfinates. J Sulfur Chem. 2017;38:76–82. doi: 10.1080/17415993.2016.1241785
  • Nematpour M, Rezaee E, Tabatabai S A, et al. A copper-catalyzed synthesis of functionalized quinazolines from isocyanides and aniline tri- and dichloroacetonitrile adducts through intramolecular C–H activation. Synlett. 2017;12:1441–1444.
  • Abbasi S, Saberi D, Heydari A. Copper oxide supported on magnetic nanoparticles (CuO@γ-Fe2O3): An efficient and magnetically separable nanocatalyst for addition of amines to carbodiimides towards synthesis of substituted guanidines. Appl Organomet Chem. 2017;31:e3695. doi: 10.1002/aoc.3695

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.