127
Views
11
CrossRef citations to date
0
Altmetric
Short Communications

UV Light-mediated regioselective methylsulfanyl discrimination via Pd-catalyzed cross-coupling reactions of 2,4-dimethylsulfanylpyrido[2,3-d]pyrimidines

Pages 351-360 | Received 19 Sep 2018, Accepted 24 Feb 2019, Published online: 02 Apr 2019

References

  • Peng Z, Hu G, Qiao H, et al. Palladium-catalyzed Suzuki cross-coupling of arylhydrazines via C–N bond cleavage. J Org Chem. 2014;79:2733–2738. doi: 10.1021/jo500026g
  • Duda ML, Michael FE. Palladium-catalyzed cross-coupling of N-Sulfonylaziridines with boronic acids. J Am Chem Soc. 2013;135:18347–18349. doi: 10.1021/ja410686v
  • Kalinin VN. Carbon-carbon bond formation in heterocycles using Ni- and Pd-catalyzed reactions. Synthesis (Mass). 1992: 413–432. doi: 10.1055/s-1992-26125
  • Schröter S, Stock C, Bach T. Regioselective cross-coupling reactions of multiple halogenated nitrogen-, oxygen-, and sulfur-containing heterocycles. Tetrahedron. 2005;61:2245–2267. doi: 10.1016/j.tet.2004.11.074
  • Theeramunkong S, Caldarelli A, Massarotti A, et al. Regioselective Suzuki coupling of dihaloheteroaromatic compounds as a rapid strategy to synthesize potent rigid combretastatin analogues. J Med Chem. 2011;54:4977–4986. doi: 10.1021/jm200555r
  • Parks EL, Sandford G, Christopher JA, et al. Perhalogenated pyrimidine scaffolds. Reactions of 5-chloro- 2,4,6-trifluoropyrimidine with nitrogen centred nucleophiles. Beilstein J. Org. Chem. 2008;4:22–28. doi: 10.3762/bjoc.4.22
  • Tumkevicius S, Dodonova J. Functionalization of pyrrolo[2,3-d]pyrimidine by palladium-catalyzed cross-coupling reactions (review). Chem Heterocycl Comp. 2012;48:258–279. doi: 10.1007/s10593-012-0986-2
  • Skardziute L, Dodonova J, Voitechovicius A, et al. Synthesis and optical properties of the isomeric pyrimidine and carbazole derivatives: effects of polar substituents and linking topology. Dyes Pigm. 2015;118:118–128. doi: 10.1016/j.dyepig.2015.03.008
  • Reck F, Alm R, Brassil P, et al. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II: broad-spectrum antibacterial agents with reduced hERG activity. J Med Chem. 2011;54:7834–7847. doi: 10.1021/jm2008826
  • Rajesh SM, Kumar RS, Libertsen LA, et al. A green expedient synthesis of pyridopyrimidine-2-thiones and their antitubercular activity. Bioorg Med Chem Lett. 2011;21:3012–3016. doi: 10.1016/j.bmcl.2011.03.045
  • Ribble W, Hill WE, Ochsner UA, et al. Mechanisms of action: physiological effects discovery and analysis of 4H-pyridopyrimidines, a class of selective bacterial protein synthesis inhibitors. Antimicrob Agents Chemother. 2010;54:4648–4657. doi: 10.1128/AAC.00638-10
  • Rosowsky A, Mota CE, Queener SF. Synthesis and antifolate activity of 2,4-diamino-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine analogues of trimetrexate and piritrexim. J Heterocyclic Chem. 1995;32:335–340.
  • Grivsky EM, Lee S, Sigel CW, et al. Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. J Med Chem. 1980;23:327–329. doi: 10.1021/jm00177a025
  • Nofal ZM, Fahmy HH, Zarea ES, et al. Synthesis of new pyrimidine derivatives with evaluation of their anti-inflammatory and analgesis activities. Acta Pol Pharm. 2011;68:507–517.
  • Ghilsoo N, Cheol MY, Euikyung K, et al. Syntheses and evaluation of pyrido[2,3-d]pyrimidine-2,4-diones as PDE 4 inhibitors. Bioorg Med Chem Lett. 2001;11:611–614. doi: 10.1016/S0960-894X(00)00681-8
  • Singh G, Singh G, Yadav AK, et al. Synthesis and antimicrobial evaluation of some new pyrido[2,3-d]pyrimidines and their ribofuranosides. Indian J Chem Sect B: Org Chem Incl Med Chem. 2002;41:430–432.
  • Liu KK, Huang X, Bagrodia S, et al. Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as PI3 K/mTOR dual inhibitors. Bioorg Med Chem Lett. 2011;21:1270–1274. doi: 10.1016/j.bmcl.2010.12.026
  • El-Subbagh HI, Abu-Zaid SM, Mahran MA, et al. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J Med Chem. 2000;43:2915–2921. doi: 10.1021/jm000038m
  • Bennett LR, Blankley CJ, Fleming RW, et al. Antihypertensive activity of 6-arylpyrido[2,3-d]pyrimidin-7-amine derivatives. J Med Chem. 1981;24:382–389. doi: 10.1021/jm00136a006
  • Agarwal A, Ramesh R, Ashutosh A, et al. Dihydropyrido[2,3-d]pyrimidines as a new class of antileishmanial agents. Bioorg Med Chem. 2005;13:6678–6684. doi: 10.1016/j.bmc.2005.07.043
  • Mahmoud MR, El-Bordany EAA, Hassan NF, et al. Utility of nitriles in synthesis of pyrido[2,3-d]pyrimidines, thiazolo[3,2-a]pyridines, pyrano[2,3-b]benzopyrrole, and pyrido[2,3-d]benzopyrroles. Phosphorus Sulfur Silicon Relat. Elem. 2007;182:2507–2521. doi: 10.1080/10426500701506465
  • Bulicz J, Daniela CG, Bertarelli DCG, et al. Synthesis and pharmacology of pyrido[2,3-d]pyrimidinediones bearing polar substituents as adenosine receptor antagonists. Bioorg. Med. Chem. 2006;14:2837–2849. doi: 10.1016/j.bmc.2005.12.008
  • Monge A, Martinez-Merino V, Sanmartin C, et al. 2-Arylamino-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidines: synthesis and diuretic activity. Eur J Med Chem. 1989;24:209–216. doi: 10.1016/0223-5234(89)90001-9
  • El-Gazzar ABA, Gaffar AM, Youssef MM, et al. Synthesis and anti-oxidant activity of novel pyrimido[4,5-b]quinolin-4-one derivatives with a new ring system. Phosphorus Sulfur Silicon Relat Elem. 2007;182:2009–2037. doi: 10.1080/10426500701369864
  • Taylor EC, Palmer DC, George TJ, et al. Synthesis and biological activity of L-5-deazafolic acid and L-deazaaminopterin: synthetic strategies to 5-deazapteridines. J Org Chem. 1983;48:4852–4860. doi: 10.1021/jo00173a014
  • Degraw JI, Christie PH, Colwell WT, et al. Synthesis and antifolate properties of 5,10-ethano-5,10-dideazaaminopterin. J Med Chem. 1992;35:320–324. doi: 10.1021/jm00080a017
  • Saurat T, Buron F, Rodrigues N, et al. Design, synthesis, and biological activity of pyridopyrimidine scaffolds as novel PI3 K/mTOR dual inhibitors. J Med Chem. 2014;57:613–631. doi: 10.1021/jm401138v
  • Font M, González Á, Palop JA, et al. New insights into the structural requirements for pro-apoptotic agents based on 2,4-diaminoquinazoline, 2,4-diaminopyrido[2,3-d]pyrimidine and 2,4-diaminopyrimidine derivatives. Eur J Med Chem. 2011;46:3887–3899. doi: 10.1016/j.ejmech.2011.05.060
  • Sako M. In Science of Synthesis. Vol. 16. Yamamoto Y, editor. Thieme: Stuttgart; 2004. p. 1155.
  • Mitchell LJ, Lewis W, Moody CJ. Solar photochemistry: optimisation of the photo Friedel-Crafts acylation of naphthoquinones. Green Chem. 2013:15:2830. doi: 10.1039/c3gc41477a
  • Ravelli D, Fagnoni M, Albini A. Photoorganocatalysis what for? Chem Soc Rev. 2013;42:97–113. doi: 10.1039/C2CS35250H
  • Riadi Y, Massip S, Leger JM, et al. Convenient synthesis of 2,4-disubstituted pyrido[2,3-d]pyrimidines via regioselective palladium-catalyzed reactions. Tetrahedron. 2012;68:5018–5024. doi: 10.1016/j.tet.2012.04.051
  • Riadi Y, Geesi M, Dehbi O, et al. Novel animal-bone-meal-supported palladium as a green and efficient catalyst for Suzuki coupling reaction in water, under sunlight. Green Chem Lett Rev. 2017;10:101–106. doi: 10.1080/17518253.2017.1300687
  • Riadi Y, Geesi M. Photochemical route for the synthesis of novel 2-monosubstituted pyrido[2,3-d]pyrimidines by palladium-catalyzed cross-coupling reactions. Chem Pap. 2018;72:697–701. doi: 10.1007/s11696-017-0325-2
  • Krömer M, Klečka M, Slavětínská L, et al. Chemoselective synthesis of 4,5-diarylpyrrolo[2,3-d]pyrimidines (6,7-diaryl-7-deazapurines) by consecutive Suzuki and Liebeskind-Srogl cross-couplings. Eur J Org Chem. 2014;32:7203–7210. doi: 10.1002/ejoc.201402882
  • Čerňová M, Pohl R, Klepetářová B, et al. A general regioselective synthesis of 2,4-diarylpyrimidines from 2-Thiouracil through two orthogonal cross-coupling reactions. Synlett. 2012;23:1305–1308. doi: 10.1055/s-0031-1290826
  • Liebeskind LS, Srogl J. Thiol ester−boronic acid coupling. A Mechanistically unprecedented and general ketone synthesis. J. Am. Chem. Soc. 2000;122:11260–11261. doi: 10.1021/ja005613q
  • Liebeskind LS, Srogl J. Heteroaromatic thioether−boronic acid cross-coupling under neutral reaction conditions. Org. Lett. 2002;4:979–981. doi: 10.1021/ol0200091
  • Egi M, Liebeskind LS. Heteroaromatic thioether−organostannane cross-coupling. Org. Lett. 2003;5:801–802. doi: 10.1021/ol0273497
  • Maingot L, Dehbi O, Buron F, et al. Regioselective syntheses of 2,7-(Het)arylpyrido[2,3-d]pyrimidines by an orthogonal cross-coupling. Strategy. 2012;23:2449–2452.
  • El-Remaily MAA, El Hady OM, Abo Zaid HS, et al. Synthesis and in vitro antibacterial activity of some novel fused pyridopyrimidine derivatives. J Heterocyclic Chem. 2016;53:1304–1309. doi: 10.1002/jhet.2420
  • Abdel-Mohsen SA, Geies AA. Synthesis of pyrido[2′,3′:4,5]thieno[2,3-d ]pyrimidines through Friedländer reactions. J Chem Res. 2007;12:689–692. doi: 10.3184/030823407X269961
  • Yu Y, Liebeskind LS. Copper-mediated, palladium-catalyzed coupling of thiol esters with aliphatic organoboron reagents. J Org Chem. 2004;69:3554–3557. doi: 10.1021/jo049964p
  • Handy ST, Zhang Y. A simple guide for predicting regioselectivity in the coupling of polyhaloheteroaromatics. Chem Commun. 2006;299–301. doi: 10.1039/B512948F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.