339
Views
2
CrossRef citations to date
0
Altmetric
Review

Strategies for introducing sulfur atom in a sugar ring: synthesis of 5-thioaldopyranoses and their NMR data

ORCID Icon
Pages 664-702 | Received 28 Jan 2019, Accepted 05 May 2019, Published online: 22 May 2019

References

  • Adley TJ, Owen LN. Thiosugars with sulfur in the ring. Proc Chem Soc Lond. 1961: 418.
  • Schwarz J, Yule K. d-xylothiapyranose-A sugar with sulphur in the ring. Proc Chem Soc Lond. 1961: 417.
  • Whistler RL, Feather MS, Ingles DL. Introduction of a new hetero atom into a sugar ring. J Am Chem Soc. 1962;84:122–122.
  • McNaught AD. Nomenclature of carbohydrates. Carbohydr Res. 1997;297:1–92.
  • N.A. Nomenclature of Carbohydrates, (Recommendations 1996). 2-Carb-15. Thio sugars and other chalcogen analogues and 2-Carb-34. Replacement of ring oxygen by other elements. Adv Carbohydr Chem Biochem. 1997;52:44–177.
  • Greimel P, Spreitz J, Sprenger FKF, et al. Sugars with endocyclic heteroatoms other than oxygen. The Organic Chemistry of Sugars. Boca Raton: CRC Press; 2005; p. 383–424.
  • Inmaculada R, Pierre V, Zbigniew JW. Synthesis and biological properties of monothiosaccharides. Curr Org Chem. 2001;5:1177–1214.
  • Yuasa H, Izumi M, Hashimoto H. Thiasugars: potential glycosidase inhibitors. Curr Top Med Chem. 2009;9:76–86.
  • Horton D, Wander JD. The carbohydrate. chemistry and biochemistry. In: Pigman W, Horton D, editor. Vol. IB. 2nd ed. New York: Academic Press; 1980. p. 799–842.
  • Hashimoto H, Fujimori T, Yuasa H. Synthesis of 5-thio-l-fucose and its inhibitory effect on fucosidase. J Carbohydrate Chemistry. 1990;9:683–694.
  • Kajimoto T, Liu KKC, Pederson RL, et al. Enzyme-catalyzed aldol condensation for asymmetric synthesis of azasugars: synthesis, evaluation, and modeling of glycosidase inhibitors. J Am Chem Soc. 1991;113:6187–6196.
  • (a) Witczak ZJ. Thio sugars: biological relevance as potential new therapeutics. Curr Med Chem. 1999;6:165–178. (b) Dey PM, Witczak ZJ. Functionalized S-thio-di- and S-oligosaccharide precursors as templates for novel SLex/a mimetic antimetastatic agents. Mini Rev Med Chem. 2003;3:271–80.
  • Horton D, Hutson DH. Developments in the chemistry of thiosugars. In: Wolfrom ML, Tipson RS, editor. Advances in carbohydrate chemistry. Vol. 18. California: Academic Press; 1963. p. 123–199.
  • Paulsen H, Todt K. Cyclic monosaccharides having nitrogen or sulfur in the ring (Translated from the German) by M.L. Wolfrom. In: Wolfrom ML, Tipson RS, editor. Advances in carbohydrate chemistry. Vol. 23. Amsterdam: Academic Press; 1968. p. 115–232.
  • Whistler RL, Anisuzzaman AKM. Methods for introducing atoms other than oxygen into sugar rings. Synthetic methods for carbohydrates. ACS Symp Ser: Am Chem Soc. 1977;39:133–154.
  • Nicotra F. Modified carbohydrates and carbohydrate analogues. In: Boons G-J, editor. Carbohydrate chemistry. London: Blackie Academic and Professional; 1998. p. 384–429.
  • Hale KJ, Richardson AC. Chemical synthesis of monosaccharides. In: Finch P, editor. Carbohydrates: structures, syntheses and dynamics. Dordrecht: Springer Netherlands; 1999. p. 47–106.
  • Mehta S, Pinto BM. Phenyl selenoglycosides as a versatile glycosylating agents in oligosaccharides synthesis and the chemical synthesis of disaccharides containing sulfur and selenium. In: Khan SH, O’Neill RA, editor. Modern methods in carbohydrate synthesis. Amsterdam: Harwood Academic Publishers; 1996. p. 107–129.
  • Yuasa H, Hashimoto H. Replacing the ring oxygen of carbohydrates with sulfur: its biological and chemical consequences. Rev Heteroatom Chem. 1999;19:35–65.
  • Fernandez-Bolanos JG, Al-Masoudi NA, Maya I. Sugar derivatives having sulfur in the ring. Adv Carbohydr Chem Biochem. 2001;57:21–98.
  • Inmaculada R, Pierre V. The synthesis of disaccharides, oligosaccharides and analogues containing thiosugars. Curr Org Chem. 2002;6:471–491.
  • Witczak ZJ, Culhane JM. Thiosugars: new perspectives regarding availability and potential biochemical and medicinal applications. Appl Microbiol Biotechnol. 2005;69:237–244.
  • Malone A, Scanlan EM. Applications of thiyl radical cyclizations for the synthesis of thiosugars. Org Lett. 2013;15:504–507.
  • Malone A, Scanlan EM. Applications of 5-exo-trig thiyl radical cyclizations for the synthesis of thiosugars. J Org Chem. 2013;78:10917–10930.
  • Capon RJ, MacLeod JK. 5-Thio-d-mannose from the marine sponge Clathria pyramida (Lendenfeld). The first example of a naturally occurring 5-thiosugar. J Chem Soc Chem Commun. 1987;15:1200–1201.
  • Yoshikawa M, Murakami T, Shimada H, et al. Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India. Tetrahedron Lett. 1997;38:8367–8370.
  • Yoshikawa M, Murakami T, Yashiro K, et al. Kotalanol, a potent α-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic Ayurvedic medicine Salacia reticulata. Chem Pharm Bull. 1998;46:1339–1340.
  • Oishi H, Noto T, Sasaki H, et al. Thiolactomycin, a new antibiotic. J Antibiot. 1982;35:391–395.
  • Sasaki H, Oishi H, Hayashi T, et al. Thiolactomycin, a new antibiotic. J Antibiot. 1982;35:396–400.
  • Wong CH, Ichikawa Y, Krach T, et al. Probing the acceptor specificity of.beta.-1,4-galactosyltransferase for the development of enzymatic synthesis of novel oligosaccharides. J Am Chem Soc. 1991;113:8137–8145.
  • Mehta S, Andrews JS, Svensson B, et al. Synthesis and enzymic activity of novel glycosidase inhibitors containing sulfur and selenium. J Am Chem Soc. 1995;117:9783–9790.
  • Andrews JS, Weimar T, Frandsen TP, et al. Novel disaccharides containing sulfur in the ring and nitrogen in the interglycosidic linkage. conformation of methyl 5’-thio-4-N-.alpha.-maltoside bound to glucoamylase and its activity as a competitive inhibitor. J Am Chem Soc. 1995;117:10799–10804.
  • Tsuruta O, Yuasa H, Hashimoto H, et al. Synthesis of GDP-5-thiosugars and their use as glycosyl donor substrates for glycosyltransferases. J Org Chem. 2003;68:6400–6406.
  • Matsuda H, Ohara K, Morii Y, et al. α-Selective glycosylation with 5-thioglucopyranosyl donors; synthesis of an IsoMaltotetraoside mimic composed of 5-thioglucopyranose units. Bioorg Med Chem Lett. 2003;13:1063–1066.
  • Stachel H-D, Schachtner J, Lotter H. Synthesis of (±) – thioascorbic acid. Tetrahedron. 1993;49:4871–4880.
  • Bellamy F, Barberousse V, Martin N, et al. Thioxyloside derivatives as orally active venous antithrombotics. Eur J Med Chem. 1995;30:101s–115s.
  • Bozó É, Boros S, Kuszmann J. Synthesis of 4-cyanophenyl 2-azido-2-deoxy-and 3-azido-3-deoxy-1, 5-dithio-β-d-xylopyranosides. Carbohydr Res. 1997;301:23–32.
  • Bozó É, Boros S, Kuszmann J. Synthesis of 4-cyanophenyl 4-azido-4-deoxy-1, 5-dithio-β-d-xylopyranoside. Carbohydr Res. 1997;302:149–162.
  • Samreth S, Barberousse V, Bellamy F, et al. Thioxyloside derivatives, a novel oral venous antithrombotic. Actual Chim Ther. 1994;21:23–33.
  • Bellamy F, Horton D, Millet J, et al. Glycosylated derivatives of benzophenone, benzhydrol and benzhydril as potential venous antithrombotic agents. J Med Chem. 1993;36:898–903.
  • Schuetz RD, Jacobs RL. The preparation and desulfurization of some unsymmetrically substituted thiiranes. J Org Chem. 1961;26:3467–3471.
  • Gao Y, Sharpless K. Titanium isopropoxide mediated formation of 2, 3-epithio alcohols from 2, 3-epoxy alcohols. J Org Chem. 1988;53:4114–4116.
  • Uenishi J, Motoyamaand M, Takahashi K. Asymmetric synthesis of d- and l-2-deoxy-4-thioriboscs. Tetrahedron: Asymmetry. 1994;5:101–110.
  • Izraelewicz MH, Nur M, Spring RT, et al. Studies on the reaction of thiiranes with tributyltin hydride. J Org Chem. 1995;60:470–472.
  • Kamata M, Murayama K, Miyashi T. Aminium radical salt catalyzed desulphurization of thiiranes: an efficient preparation of arylsubstituted olefins. Tetrahedron Lett. 1989;30:4129–4132.
  • Witczak ZJ, Poplawski T, Czubatka A, et al. A potential CARB-pharmacophore for antineoplastic activity: part 1. Bioorg Med Chem Lett. 2014;24:1752–1757.
  • Whistler RL, Lake WC. Inhibition of cellular transport processes by 5-thio-d-glucopyranose. Biochem J. 1972;130:919–925.
  • Nakamura M, Hall PF. Effect of 5-thio-d-glucose on protein synthesis in vitro by various types of cells from rat testes. J Reprod Fertil. 1977;49:395–397.
  • Bushway AA, Keenan TW. 5-Thio-d-glucose is an acceptor for UDP-galactose: d-glucose 1-galactosyltransferase. Biochem Biophys Res Commun. 1978;81:305–309.
  • Kim SH, Kim JH, Hahn EW. Selective potentiation of hyperthermic killing of hypoxic cells by 5-thio-d-glucose. Cancer Res. 1978;38:2935–2938.
  • Nayak UG, Whistler RL. Synthesis of 5-thio-d-glucose. J Org Chem. 1969;34:97–100.
  • Whistler RL, Lake WC. [50] – 5-thio-α-d-glucopyranose: via conversion of a terminal oxirane ring to a terminal thiirane ring. In: Whistler RL, BeMiller JN, editor. General carbohydrate method. Amsterdam: Academic press. 1972. p. 286–291.
  • Chiu C-W, Whistler RL. Alternate synthesis of 5-thio-d-glucose pentaacetate. J Org Chem. 1973;38:832–834.
  • Gramera RE, Park A, Whistler RL. A convenient preparation of 1,2-mono-O-isopropylidene-α-d-glucofuranose1. J Org Chem. 1963;28:3230–3231.
  • Meyer AS. Reichstein T. l-Idose aus d-glucose, sowie ein neuer Weg zur l-Idomethylose. Helv Chim Acta. 1946;29:152–162.
  • Hedgley EJ, Mérész O, Overend WG. Structure and reactivity of anhydro-sugars. part VII. syntheses of 5-deoxy-d-xylo-hexose. J Chem Soc C: Org. 1967: 888–894.
  • Rowell RM, Whistler RL. Derivatives of α-d-glucothiopyranose1. J Org Chem. 1966;31:1514–1516.
  • Yuasa H, Tamura J-I, Hashimoto H. Synthesis of per-O-alkylated 5-thio-d-glucono-1,5-lactones and transannular participation of the ring sulphur atom of 5-thio-d-glucose derivatives on solvolysis under acidic conditions. J Chem Soc Perkin Trans. 1990;1:2763–2769.
  • Abd El-Rahman MMA, Whistler RL. A shorter synthesis of 5-thio-α-d-glucose pentaacetate. Org Prep Proced Int. 1973;5:245–249.
  • Driguez H, Henrissat B. A novel synthesis of 5-thio-d-glucose. Tetrahedron Lett. 1981;22:5061–5062.
  • Owen LN, Peat S, Jones WJG. 65. Furanose and pyranose derivatives of glucurone. J. Chem Soc (Resumed). 1941: 339–344.
  • Creighton AM, Owen LN. 211. Some carbohydrate episulphides. J Chem Soc (Resumed). 1960: 1024–1029.
  • Hall LD, Hough L, Pritchard RA. 302. The epoxide–episulphide transformation. J Chem Soc (Resumed). 1961: 1537–1545.
  • Hashimoto H, Kawanishi M, Yuasa H. Novel conversion of aldopyranosides into 5-thioaldopyranosides via acyclic monothioacetals with inversion and retention of configuration at C-5. Carbohydr Res. 1996;282:207–221.
  • Hashimoto H, Kawanishi M, Yuasa H. New and facile synthetic routes to 5-thioaldohexopyranosides via aldose monothioacetal derivatives. Tetrahedron Lett. 1991;32:7087–7090.
  • Guindon Y, Anderson PC. Stereoelectronic effects in the ring cleavage of methyl glycopyranosides using dimethylboron bromide. Tetrahedron Lett. 1987;28:2485–2488.
  • Tsuda Y, Sato Y, Kanemitsu K, et al. Utilization of sugars in Organic synthesis. Part XXX. Thio-sugars. I. Radical-promoted thione-thiol rearrangement of cyclic thionocarbonates: synthesis of 5-Thioglucose.. Chem Pharm Bull. 1996;44:1465–1475.
  • Tsuda Y, Noguchi S, Kanemitsu K, et al. Utilization of sugars in organic synthesis. Part XXXIII. Thio-sugars III. Radical catalyzed thione-thiol rearrangement of cyclic thionocarbonates on a pyranose ring: formation of cis-Arranged cyclic thiolcarbonates. Chem Pharm Bull. 1997;45:971–980.
  • Uenishi JI, Ohmiya H. Novel synthesis of 5-thio-hexopyranoside: preparation of 5-thio-d- and l-glucose and 1,6-anhydro-5-thio-l- and d-altrose. Tetrahedron. 2003;59:7011–7022.
  • Hyldtoft L, Madsen R. Carbohydrate carbocyclization by a novel zinc-mediated Domino reaction and ring-closing olefin metathesis. J Am Chem Soc. 2000;122:8444–8452.
  • Uenishi JI, Motoyama M, Nishiyama Y, et al. Intramolecular ring opening of a 2,3-epoxy alcohol by a xanthate anionic center; stereospecific preparation of 2-mercapto-1,3-diol units. Heteroat Chem. 1994;5:51–60.
  • Nam Shin JE, Perlin AS. Synthesis of 5-thio-d-galactose. Carbohydr Res. 1979;76:165–176.
  • Wang Y, Du Y. Synthesis of 5-thio-d- galactopyranose. J Carbohydr Chem. 2013;32:240–248.
  • Repetto E, Manzano VE, Uhrig ML, et al. Synthesis of branched dithiotrisaccharides via ring-opening reaction of sugar thiiranes. J Org Chem. 2012;77:253–265.
  • Yuasa H, Izukawa Y, Hashimoto H. Synthesis of 5-thio-d-mannose. J Carbohydr Chem. 1989;8:753–763.
  • Randall MH. Synthesis of methyl d-mannofufanosides and of 5-O-methyl-d-mannose. Carbohydr Res. 1969;11:173–178.
  • Al-Masoudi NAL, Hughes NA. Synthesis of 5-thio-d-altrose and some of its derivatives. Carbohydr Res. 1986;148:39–49.
  • Hughes NA. Synthesis of 5-thio-d-allose and 5-thio-d-altrose. J Chem Soc Chem Commun. 1979;7:319–320.
  • Al-Masoudi NAL, Hughes NA. 5-Thiopyranoses. Part 12. Sulphur participation in displacement reactions of sulphonate esters of 5-thio-d-allose, 5-thio-d-altrose, and 5-thio-d-glucose derivatives. J Chem Soc Perkin Trans 1. 1987: 2061–2067.
  • Al-Masoudi NAL, Hughes NA. 5-Thiopyranoses. Part 11. Isopropylidene acetals of 5-thio-d-glucose, 5-thio-d-allose, and 5-thio-d-altrose and some of their methyl glycosides. J Chem Soc Perkin Trans 1. 1987: 1413–1420.
  • Al-Mosoudi NAL, Hughes NA. Synthesis of 5-thio-d-allose and the methyl 5-thio-α- and -β-d-allopyranosides. Carbohydr Res. 1986;148:25–37.
  • Kovár J. Improvements for the preparation of l-idose from d-glucose. Can J Chem. 1970;48:2377–2385.
  • Takahashi H, Hitomi Y, Iwai Y, et al. A novel and practical synthesis of l-hexoses from d-glycono-1,5-lactones. J Am Chem Soc. 2000;122:2995–3000.
  • Takahashi H, Iwai Y, Hitomi Y, et al. Novel synthesis of l-ribose from d-mannono-1,4-lactone. Org Lett. 2002;4:2401–2403.
  • Hollingsworth RI, Song X. A facile and general synthesis of rare l-sugar lactones. Synlett. 2007;2007:1247–1250.
  • Lunau N, Meier C. Synthesis of l-altrose and some derivatives. European J Org Chem. 2012;2012:6260–6270.
  • Kashem A, Anisuzzaman M, Whistler RL. 5-thio-l-rhamnose. Carbohydr Res. 1977;55:205–214.
  • Denton RM, An J, Adeniran B, et al. Catalytic phosphorus(V)-mediated nucleophilic substitution reactions: development of a catalytic Appel reaction. J Org Chem. 2011;76:6749–6767.
  • Appel R. Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration, and P-N linkage. Ange Chem Int Edit Engl. 1975;14:801–811.
  • Beynon PJ, Collins PM, Doganges PT, et al. The oxidation of carbohydrate derivatives with ruthenium tetroxide. J Chem Soc C: Org. 1966: 1131–1136.
  • Adley T, Owen L. Thiosugars. Part I. The thiopyranose ring. J Chem Soc C: Org. 1966: 1287–1290.
  • Hughes NA, Munkombwe NM, Todhunter ND. Synthesis of derivatives of 5-thio-l-idose. Carbohydr Res. 1992;216:119–128.
  • Popsavin M, Popsavin V, Vukojević N, et al. Preparation of 2, 5-anhydro-3, 4, 6-tri-O-benzoyl-d-allononitrile from d-glucose. Carbohydr Res. 1994;260:145–150.
  • Augé J, David S. Hexopyranose sugars conformation revised. Tetrahedron. 1984;40:2101–2106.
  • Calvo-Flores FG, García-Mendoza P, Hernández-Mateo F, et al. Applications of cyclic sulfates of vic-diols: synthesis of episulfides, olefins, and thio sugars. J Org Chem. 1997;62:3944–3961.
  • Gao Y, Sharpless KB. Vicinal diol cyclic sulfates. Like epoxides only more reactive. J Am Chem Soc. 1988;110:7538–7539.
  • Lambert JB, Wharry SM. Conformational analysis of 5-thio-d-glucose. J Org Chem. 1981;46:3193–3196.
  • Emery F, Vogel P. Total asymmetric synthesis of 5-deoxy-5-thio-l-allose. J Carbohydr Chem. 1994;13:555–563.
  • Vieira E, Vogel P. The preparation of optically pure 7-oxabicyclo [2.2.1]hept-2-ene derivatives. The CD spectrum of (+)-(1R)-7-Oxabicyclo [2.2.1]hept-5-en-2-one. Helv Chim Acta. 1983;66:1865–1871.
  • Vogel P. Synthesis of rare carbohydrates and biomolecules from furan. Bulletin des Sociétés Chimiques Belges. 1990;99:395–439.
  • Reymond J-L, Vogel P. New chiral auxiliaries and new optically pure ketene equivalents derived from tartaric acids. Improved synthesis of (−)-7-oxabicyclo [2.2. 1] hept-5-en-2-one. Tetrahedron: Asymmetry. 1990;1:729–736.
  • Auberson Y, Vogel P. Total synthesis of l-allose, l-talose, and derivatives. Helv Chim Acta. 1989;72:278–286.
  • Izumi M, Tsuruta O, Hashimoto H. A facile synthesis of 5-thio-l-fucose and 5-thio-d-arabinose from d-arabinose. Carbohydr Res. 1996;280:287–302.
  • Hashimoto H, Izumi M. A facile synthesis of 5-thio-l-fucose and 3-O-allyl-l-fucose triacetate from d-arabinose. Chem Lett. 1992;21:25–28.
  • Fuller T, Stick R. Further stereoselective reductions of 3-O-hexofuranosyl S-methyl dithiocarbonates with tributyltin deuteride. A comment on mechanism. Aust J Chem. 1980;33:2509–2515.
  • Aguirre-Valderrama A, Dobado JA. Conformational analysis of thiosugars: theoretical NMR chemical shifts and 3 JH, H coupling constants of 5-thio-pyranose monosaccharides. J Carbohydr Chem. 2006;25:557–594.
  • Horton D, Varela O. Crystalline 2,3:4,5-di-O-isopropylidene-dl-arabinose diethyl dithioacetal: some reactions of acetal derivatives of arabinose. Carbohydr Res. 1984;134:205–214.
  • Omura K, Swern D. Oxidation of alcohols by “activated” dimethyl sulfoxide. A preparative, steric and mechanistic study. Tetrahedron. 1978;34:1651–1660.
  • Corey EJ, Suggs JW. Selective cleavage of allyl ethers under mild conditions by transition metal reagents. J Org Chem. 1973;38:3224–3224.
  • Gigg R, Warren CD. The allyl ether as a protecting group in carbohydrate chemistry. part II. J Chem Soc C: Org. 1968: 1903–1911.
  • Cleland WW. Dithiothreitol, a new protective reagent for SH groups. Biochemistry. 1964;3:480–482.
  • Takahashi S, Kuzuhara H. Syntheses of l-fucopyranose and its homologs with ring heteroatoms other than oxygen. Stereocontrolled conversion of a common d-arabinofuranoside intermediate. Chem Lett. 1992;21:21–24.
  • Fujita K, Ohta K, Ikegami Y, et al. General method for preparing altrosides from 2, 3-manno-epoxides and its application to synthesis of alternative β-cyclodextrin with an altroside as the constituent of macrocyclic structure. Tetrahedron Lett. 1994;35:9577–9580.
  • Ingles DL, Whistler RL. Preparation of several methyl d-pentothiapyranosides1. J Org Chem. 1962;27:3896–3898.
  • Rao VSR, Foster JF, Whistler RL. Ring conformation in methyl α- and β-d-xylothiapyranosides as demonstrated by nuclear magnetic resonance1. J Org Chem. 1963;28:1730–1731.
  • Moravcová J, Čapková J, Staněk J. One-pot synthesis of 1,2-O-isopropylidene-α-d-xylofuranose. Carbohydr Res. 1994;263:61–66.
  • Moravcová J, Čapková J, Staněk J, et al. Methyl 5-deoxy-α and β-d-xylofuranosides. J Carbohydr Chem. 1997;16:1061–1073.
  • Bozó É, Boros S, Kuszmann J, et al. An economic synthesis of 1, 2, 3, 4-tetra-O-acetyl-5-thio-d-xylopyranose and its transformation into 4-substituted-phenyl 1, 5-dithio-d-xylopyranosides possessing antithrombotic activity. Carbohydr Res. 1998;308:297–310.
  • Lalot J, Stasik I, Demailly G, et al. Efficient synthesis of 5-thio-d-arabinopyranose and 5-thio-d-xylopyranose from the corresponding d-pentono-1, 4-lactones. Carbohydr Res. 2003;338:2241–2245.
  • Lalot J, Stasik I, Demailly G, et al. An improved synthesis of 5-thio-d-ribose from d-ribono-1, 4-lactone. Carbohydr Res. 2002;337:1411–1416.
  • Bouchez V, Stasik I, Beaupère D, et al. Regioselective halogenation of pentono-1,4-lactones. Efficient synthesis of 5-chloro- and 5-bromo-5-deoxy derivatives. Carbohydr Res. 1997;300:139–142.
  • Charmantray F, Dellis P, Hélaine V, et al. Chemoenzymatic synthesis of 5-thio-d-xylopyranose. European J Org Chem. 2006;2006:5526–5532.
  • André C, Guérard C, Hecquet L, et al. Modified l-threose and d-erythrose as substrates of transketolase and fructose-1, 6-bisphosphate aldolase. Application to the synthesis of new heptulose analogues. J Mol Catal B: Enzym. 1998;5:459–466.
  • Espelt L, Parella T, Bujons J, et al. Stereoselective aldol additions catalyzed by dihydroxyacetone phosphate-dependent aldolases in emulsion systems: preparation and structural characterization of linear and cyclic iminopolyols from aminoaldehydes. Chem–A Eur J. 2003;9:4887–4899.
  • El Blidi L, Crestia D, Gallienne E, et al. A straightforward synthesis of an aminocyclitol based on an enzymatic aldol reaction and a highly stereoselective intramolecular Henry reaction. Tetrahedron: Asymmetry. 2004;15:2951–2954.
  • Zimmermann FT, Schneider A, Schörken U, et al. Efficient multi-enzymatic synthesis of d-xylulose 5-phosphate. Tetrahedron: Asymmetry. 1999;10:1643–1646.
  • Kobori Y, Myles DC, Whitesides GM. Substrate specificity and carbohydrate synthesis using transketolase. J Org Chem. 1992;57:5899–5907.
  • Guérard C, Alphand V, Archelas A, et al. Transketolase-mediated synthesis of 4-deoxy-d-fructose 6-phosphate by epoxide hydrolase-catalysed resolution of 1, 1-diethoxy-3, 4-epoxybutane. European J Org Chem. 1999;1999:3399–3402.
  • Crestia D, Guérard C, Veschambre H, et al. Chemoenzymatic synthesis of chiral substituted acrylate and acrylonitrile precursors for the synthesis of 3-deoxy-2-ulosonic acids and α-methylene-γ-lactones. Tetrahedron: Asymmetry. 2001;12:869–876.
  • Liu Z, Sayre LM. Model studies on the modification of proteins by lipoxidation-derived 2-hydroxyaldehydes. Chem Res Toxicol. 2003;16:232–241.
  • Effenberger F, Straub A, Null V. Enzym-katalysierte Reaktionen, 14. Stereoselektive Darstellung von Thiozuckern aus achiralen Vorstufen mittels Enzymen. Liebigs Ann Chem. 1992;1992:1297–1301.
  • Ouwerkerk N, Steenweg M, De Ruijter M, et al. One-pot two-step enzymatic coupling of pyrimidine bases to 2-deoxy-d-ribose-5-phosphate. A new strategy in the synthesis of stable isotope labeled deoxynucleosides. J Org Chem. 2002;67:1480–1489.
  • Ferroni EL, DiTella V, Ghanayem N, et al. A three-step preparation of dihydroxyacetone phosphate dimethyl acetal. J Org Chem. 1999;64:4943–4945.
  • Chou W-C, Chen L, Fang J-M, et al. A new route to deoxythio sugars based on aldolases. J Am Chem Soc. 1994;116:6191–6194.
  • Hughes NA, Munkombwe NM. Synthesis of 5-thio-d-arabinose and 5-thio-d-lyxose and their methyl glycopyranosides. Carbohydr Res. 1985;136:397–409.
  • Whistler RL, Rowell RM. Preparation of methyl l-arabinothiapyranoside and disulfide derivatives of 5-Mercapto-l-arabinose1. J Org Chem. 1964;29:1259–1261.
  • Kam BL, Oppenheimer NJ. Selective tritylation: a general, one-step, method for synthesis of 5-O-trityl-d-pentofuranoses. Carbohydr Res. 1979;69:308–310.
  • Clayton CJ, Hughes NA. 5-thio-d-ribopyranose: part I. The free sugar and the methyl glycosides. Carbohydr Res. 1967;4:32–41.
  • Leonard NJ, Carraway KL. 5-Amino-5-deoxyribose derivatives. Synthesis and use in the preparation of “reversed” nucleosides. J Heterocycl Chem. 1966;3:485–489.
  • Clayton CJ, Hughes NA. 5-thio-d-ribopyranose: part II. Methyl, 1,5-dithio-d-ribopyranosides. Carbohydr Res. 1973;27:89–95.
  • Hughes NA. 5-thio-d-ribopyranose: part III. Conformational equilibria in the methyl d-ribopyranosides, their 1-thio, 5-thio, and 1,5-dithio analogues, and the related triacetates. Carbohydr Res. 1973;27:97–105.
  • Fleetwood A, Hughes NA. Convenient synthesis of 2,3-O-isopropylidene-5-thio-d-ribose and 5-thio-d-ribose; synthesis of 1,4-anhydro-2,3-O-isopropylidene-α-d-ribopyranose and 1,4-anhydro-2,3-O-isopropylidene-5-thio-α-d-ribopyranose. Carbohydr Res. 1999;317:204–209.
  • Bozó É, Boros S, Kuszmann J. Synthesis of 4-cyanophenyl and 4-nitrophenyl 1,5-dithio-d-ribopyranosides as well as their 2-deoxy and 2,3-dideoxy derivatives possessing antithrombotic activity. Carbohydr Res. 1999;321:52–66.
  • Lerner LM. Enantiomeric forms of 9-(5-deoxy-β-erythro-pent-4-enofuranosyl)adenine and a new preparation of 5-deoxy-d-lyxose. Carbohydr Res. 1977;53:177–185.
  • Hughes NA, Wood CJ. Isopropylidene acetals of 5-Thiopentopyranoses. Carbohydr Res. 1976;49:225–232.
  • Bozó É, Kuszmann J. Synthesis of 4-cyanophenyl and 4-nitrophenyl 2-azido-2-deoxy-1, 5-dithio-β-d-arabino-and-β-d-lyxopyranosides possessing antithrombotic activity. Carbohydr Res. 2000;325:143–149.
  • Renaut P, Millet J, Sepulchre C, et al. 5a-Carba-β-d-, 5a-carba-β-l-and 5-thio-β-l-xylopyranosides as new orally active venous antithrombotic agents. Helv Chim Acta. 1998;81:2043–2052.
  • Martin NB, Masson P, Sepulchre C, et al. Pharmacologic and biochemical profiles of new venous antithrombotic β-d-xyloside derivatives: potential antiathero/thrombotic drugs. Semin Thromb Hemost. 1996;22:247–254.
  • Bozo E, Boros S, Kuszmann J. Synthesis of 4-cyanophenyl and 4-nitrophenyl 1, 5-dithio-l-and-d-arabinopyranosides possessing antithrombotic activity. Carbohydr Res. 1998;311:191–202.
  • Norris P, Horton D, Levine BR. Synthesis of 1, 5-dideoxy-1, 5-imino-d-xylonolactam VIA acid-catalyzed intramolecular schmidt rearrangement. Tetrahedron Lett. 1995;36:7811–7814.
  • Hughes NA, Munkombwe NM. Formation of methyl 5-thiopentopyranosides in the d-arabino, l-lyxo, d-ribo, and d-xylo series from methyl 5-thio-3-O-toluene-p-sulphonyl-α-d-xylopyranoside. Carbohydr Res. 1985;136:411–418.
  • Hull DMC, Orchard PF, Owen LN. Thiosugars. Part 8. Methyl 2,3-anhydro-5-thio-α-d-ribopyranoside and methyl 3,4-anhydro-5-thio-α-d-ribopyranoside. J Chem Soc Perkin Trans 1. 1977: 1234–1239.
  • Karrer P, Boettcher A. Neue synthese der d-xylomethylose. Helv Chim Acta. 1953;36:837–838.
  • Takeda A, Watanabe T, Katsumata T, et al. Thiopyranose compound and method for producing same. U.S. Patent 9,815,812, November 14, 2017.
  • Bock K, Thøgersen H. Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. In: Webb GA, editor. Annual reports on NMR spectroscopy. Vol. 13. Amsterdam: Academic Press; 1983. p. 1–57.
  • Bock K, Pedersen C. Carbon-13 nuclear magnetic resonance spectroscopy of monosaccharides. In: Tipson RS, Horton D, editor. Advances in carbohydrate chemistry and biochemistry. Vol. 41. Amsterdam: Academic Press; 1983. p. 27–66.
  • Duus JØ, Gotfredsen CH, Bock K. Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev. 2000;100:4589–4614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.