461
Views
9
CrossRef citations to date
0
Altmetric
Articles

Synthesis and crystal structure of bis(morpholino dithiocarbamato) Cd(II) complex and its use as precursor for CdS quantum dots using different capping agents

& ORCID Icon
Pages 648-663 | Received 24 Apr 2019, Accepted 20 Jun 2019, Published online: 04 Jul 2019

References

  • Tiwari S, Reddy K, Bajpai A, et al. Synthesis and characterization of bisdithiocarbamates from weak nitrogen bases and its metal complexes. Inter Res J Pure Appl Chem. 2015;7(2):78. doi: 10.9734/IRJPAC/2015/6588
  • Hogarth G. Metal-dithiocarbamate complexes: chemistry and biological activity. Mini Rev Med Chem. 2012;12:1202–1215. doi: 10.2174/138955712802762095
  • Abu-El-Halawa R, Zabin SA. Removal efficiency of Pb, Cd, Cu and Zn from polluted water using dithiocarbamate ligands. J Taibah Univ Sci. 2017;11:57–65. doi: 10.1016/j.jtusci.2015.07.002
  • Liu C, Liao P-K, Fang C-S, et al. An eleven-vertex deltahedron with hexacapped trigonal bipyramidal geometry. Chem Commun. 2011;47(20):5831–5833. doi: 10.1039/c1cc10168d
  • Khajuria D. Synthesis and characterization of dithiocarbamates of some 3d transition metals and their adducts with nitrogen and oxygen donors. 2016.
  • Rizzotto M. Metal complexes as antimicrobial agents. In A search for antibacterial agents, InTech: 2012.
  • Chintso T. Ni (II) and Pb (II) dithiocarbamate complexes as precursors for the synthesis of HDA-capped NiS and PbS nanoparticles. University of Fort Hare, 2015.
  • Bond A, Martin R. Electrochemistry and redox behaviour of transition metal dithiocarbamates. Coord Chem Rev. 1984;54:23–98. doi: 10.1016/0010-8545(84)85017-1
  • Zemskov SM, Glinskaya VB, Durasov IB, et al. Mixed-ligand zinc(II) and cadmium(II) diethyldithiocarbamate complexes with 2, 2'-bipyridyl and 4, 4'-bipyridyl: synthesis, structure, thermal properties. Zh Strukt Khim. 1993;34:157–166.
  • Ajibade PA, Ejelonu BC. Group 12 dithiocarbamate complexes: synthesis, spectral studies and their use as precursors for metal sulfides nanoparticles and nanocomposites. Spectrochim Acta Part A. 2013;113:408–414. doi: 10.1016/j.saa.2013.04.113
  • Trindade T, O'Brien P, Zhang X-M. Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach. Chem Mater. 1997;9:523–530. doi: 10.1021/cm960363r
  • Andrew FP, Ajibade PA. Metal complexes of alkyl-aryl dithiocarbamates: structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. J Mol Struct. 2018;11558:43–855.
  • Mbese JZ, Ajibade PA. Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors. J Mol Struct. 2017;1143:274–281. doi: 10.1016/j.molstruc.2017.04.095
  • Bajpai PK, Yadav S, Tiwari A, et al. In Recent advances in the synthesis and characterization of chalcogenide nanoparticles, solid state phenomena. Trans Tech Publ. 2015;222:187–233.
  • Talapin DV, Nelson JH, Shevchenko EV, et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007;7:2951–2959. doi: 10.1021/nl072003g
  • Botha NL. Ajibade PA effect of temperature on .crystallite sizes of copper sulfide nanocrystals prepared from copper(II) dithiocarbamate single source precursor. Mater Sci Semicond Process. 2016;43:149–154. doi: 10.1016/j.mssp.2015.12.006
  • Abdelhady AL, Malik MA, O’Brien P, et al. Nickel and iron sulfide nanoparticles from thiobiurets. J Phys Chem C. 2012;116:2253–2259. doi: 10.1021/jp2078659
  • Romano R, Alves OL. Semiconductor/porous silica glass nanocomposites via the single-source precursor approach. Mater Res Bull. 2006;41:376–386. doi: 10.1016/j.materresbull.2005.08.008
  • Green M. The nature of quantum dot capping ligands. J Mater Chem. 2010;20:5797–5809. doi: 10.1039/c0jm00007h
  • Zhao D, He Z, Chan W, et al. Synthesis and characterization of high-quality water-soluble near-infrared-emitting CdTe/CdS quantum dots capped by N-acetyl-L-cysteine via hydrothermal method. J Phys Chem C. 2008;113:1293–1300. doi: 10.1021/jp808465s
  • Yin Y, Talapin D. The chemistry of functional nanomaterials. Chem Soc Rev. 2013;42:2484–2487. doi: 10.1039/c3cs90011h
  • Pawar AS, Masikane SC, Mlowe S, et al. Preparation of CdS nanoparticles from thiosemicarbazone complexes: morphological influence of chlorido and iodido ligands. Eur J Inorg Chem. 2016;2016:366–372. doi: 10.1002/ejic.201501125
  • Kalia SB, Puri R, Thakur A, et al. Synthesis, characterization and thermal degradation studies on some oxovanadium(IV) carbodithioates. J Therm Anal Calorim. 2015;119:1619–1632. doi: 10.1007/s10973-014-4323-0
  • Paca AM, Ajibade PA. Synthesis and structural studies of iron sulphide nanocomposites from iron(III) dithiocarbamate single source precursors. Mater Chem Phys. 2017;202:143–150. doi: 10.1016/j.matchemphys.2017.09.012
  • Zvarych V, Stasevych M, Lunin V, et al. Synthesis and investigation of antioxidant activity of the dithiocarbamate derivatives of 9, 10-anthracenedione. Monatsh Chem. 2016;147:2093–2101. doi: 10.1007/s00706-016-1839-y
  • Andrew FP, Ajibade PA. Synthesis, characterization and anticancer studies of bis-(N-methyl-1-phenyldithiocarbamato) Cu(II), Zn(II) and Pt(II) complexes. Single crystal X-ray structure of the copper complex. J Coord Chem. 2018;16-18:2776–2786. doi: 10.1080/00958972.2018.1489537
  • Andrew FP, Ajibade PA. Synthesis, characterization and anticancer studies of bis (1-phenylpiperazine dithiocarbamato) Cu(II), Zn(II) and Pt(II) complexes: crystal structures of 1-phenylpiperazine dithiocarbamato-S, S′ zinc(II) and Pt(II). J Mol Struct. 2018;1170:24–29. doi: 10.1016/j.molstruc.2018.05.068
  • Ajibade PA, Mbese JZ, Omondi B. Group 12 dithiocarbamate complexes: synthesis, characterization, and X-ray crystal structures of Zn(II) and Hg(II) complexes and their use as precursors for metal sulfide nanoparticles. Inorg Nano-Metal Chem. 2017;47:202–212. doi: 10.1080/15533174.2015.1137589
  • Dolomanov OV, Bourhis LJ, Gildea RJ, et al. OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726
  • Hübschle CB, Sheldrick GM, Dittrich B. Shelxle: A Qt graphical user interface for SHELXL. J Appl Crystallogr. 2011;44:1281–1284. doi: 10.1107/S0021889811043202
  • Sheldrick GM. SHELXT–integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Crystallogr. 2015;71:3–8. doi: 10.1107/S2053273314026370
  • Ahmad J, How FN-F, Halim SNA, et al. A new structural motif for cadmium dithiocarbamates: crystal structures and Hirshfeld surface analyses of homoleptic zinc and cadmium morpholine dithiocarbamates. Z Kristallogr Cryst Mater. 2019;234:341–349. doi: 10.1515/zkri-2018-2141
  • Tan YS, Tiekink ER. Crystal structure of bis (µ-Ni-propyl-Nn-propyldithiocarbamato-κ3S, S′: S) bis (Ni-propyl-Nn-propyldithiocarbamato-κ2S, S′) dicadmium (II), C28H56Cd2N4S8. Z Kristallogr – New Cryst Struct. 2018;233:481–483. doi: 10.1515/ncrs-2017-0367
  • Mahmoud WH, Mohamed GG, El-Dessouky MM. Synthesis, characterization and in vitro biological activity of mixed transition metal complexes of lornoxicam with 1, 10-phenanthroline. Int J Electrochem Sci. 2014;9:1415–1438.
  • Singh RP, Maurya VK, Maiti B, et al. Three new homoleptic nickel(II) 1, 1-dithiocarbamate complexes: synthesis, structure, electrical conductivity and DFT study. J Coord Chem. 2018;71:3008–3020. doi: 10.1080/00958972.2018.1506112
  • Khataee A, Movafeghi A, Nazari F, et al. The toxic effects of L-cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. J Nanopart Res. 2014;16:2774. doi: 10.1007/s11051-014-2774-7
  • Lalitha S, Sathyamoorthy R, Senthilarasu S, et al. Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness. Sol Energy Mater Sol Cells. 2004;82:187–199. doi: 10.1016/j.solmat.2004.01.017
  • Chepape KF, Mofokeng TP, Nyamukamba P, et al. Enhancing photocatalytic degradation of methyl blue using PVP-capped and uncapped CdSe nanoparticles. J Nanotech. 2017;2017:1–6. doi: 10.1155/2017/5340784
  • Marusak K, Feng Y, Eben C, et al. Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation. RSC Adv. 2016;6:76158–76166. doi: 10.1039/C6RA13835G
  • Sabah A, Siddiqi SA, Ali S. Fabrication and characterization of CdS nanoparticles annealed by using different radiations. World Acad Sci Engineer Technol. 2010;69:82–89.
  • Patidar D, Rathore K, Saxena N, et al. In energy band gap studies of CdS nanomaterials. J Nano Res. 2008;3:97–102. doi: 10.4028/www.scientific.net/JNanoR.3.97
  • Gupta AK, Kripal R. EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method. Spectrochim Acta Part A. 2012;96:626–631. doi: 10.1016/j.saa.2012.07.038
  • Bindu P, Thomas S. Optical properties of ZnO nanoparticles synthesised from a polysaccharide and ZnCl2. Acta Phys Pol A. 2017;131:1474–1478. doi: 10.12693/APhysPolA.131.1474
  • Kiprotich S, Onani MO, Dejene FB. Effect of growth temperature on the structural, optical and luminescence properties of cadmium telluride nanoparticles. J Mater Sci Mater Electron. 2018;29:6004–6011. doi: 10.1007/s10854-018-8574-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.